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bt SUMMARY

j Procedures for evaluating the probability of failure of structures sub-
-; Jected to blast and shock loadings have been established. For simple systems
; that can be represented by a single-degree-of-freedom. a procedure is used

b that computes the transition probabilities between states of the system using

conditional probability over calculational time intervals. The system and
loading parameters that are random must be adequately characterized and the
response space must be discretized in a reasonable way to represent various
states of response. The result is a representation of the distribution of the
response within the discretized response space. All other probapility outside

the discretized response space is lost so that the first passage probability

outside the selected bounds of response can be obtained. Various schemes to
enhance this procedure computationally have been demonstrated. The procedure
is not limited to elastic systems or to stationary input, and measdres of the
response other than displacement may be considered. The first passage of

aissipated energy in an elasto-plastic system was specifically addressed and

the probabifity of failure given a random failure level has been computed.

For more compiex systems that require multiple-degree-of-freedom repre-
sentation, a procequre is presented that expands the peak response in a vayior
series in terms of the loading and system parameters. The peak response is

determined by conventional deterministic methods. The mean and variance of

the response at each location are determined by numerically approximating i;'
partial difference terms. Given the mean and variance of the failure .x
criteria, a margin of survival can be computed. Wnhen the form of the ﬁﬁ;
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distribution of the margin of survival is specified, then the probability of
survival and its complement, and the probability of failure can be numerically

determined by integration of a multivariate distribution function.

An additional approach for complex systems has been demonstrated that

uses the relationships between parameters in a numerical sequence. The Markov

property allows the random character of the response measures and their ’3;¥

correlations to be computed at each time step. The result is the evolution of

e

a stochastic process with time.

Wlele

v & s 2
P
v s .4 Syt
PRSI

¥
v,
FCIR]

""‘,. " T

'-' .-' IR 0" ’
‘, 'l " "‘ .' . .0
NP

R

S al?
‘
Y

[

.................................................................................
...............................................................




PREFACE K

Section II, “Stochastic Analysis of Mechanical Systems," was funded under
an Air Force Office of Scientific Research (AFOSK) grant, program element
61101F, and nas been published elsewhere as part of AFWL-TR-82-123. Sec-
tions IIl and IV were funded under program elements 62601F and 64711F respec-

tively. This technology is being transitioned to field problems concerned ‘
with random loads and random material properties. "’-,‘j y
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I.  INTROOUCTION

1. MUTIVATION AND OBJECTIVES

i

Structures are designed for a variety of purposes. Some function as

weather shelters (conventional buildings) while others protect their occupants

Sl PSRN

from more severe outside environments like blast and shock (protective struc-
tures). Some protect tnhe outside environment from their contents (containment
structures). The purposes of a structure are usually translated into perfor-
mance criteria. The goal of tne structural engineer is to design, analyze, b
and construct structures tnat satisfy the performance criteria. Since the
inputs, the materijal, and tne structural performance are not strictly determi-
nistic, tne engineer must De concerned with the propbability that the structure —~
will respond to all applied inputs within the limits set by the criteria. =
This probability is called reliability. When a structure's response is
designed to be far into the inelastic regime, as in the case of most protec- ;g
tive structures, the consigeration of reliability becomes both more important
and more difficult. The difficulty arises from the requirement to predict the
probabilistic nature of tnhe nonlinear response. Ee
The reliability of a structure snould be determined in any comprehensive
anajysis since, in practice, most inputs and structures are random. Inis is

especially true for protective structures in a blast ana shock environment. b

Oynamic snock inputs are often consigered random because (1) the anergy

PR n A An g

expended at the shock source cannot be directly measured, and/or (2) the phy-
sical properties of the medium connecting the snock source to the point of -

interest cannot be observed. Structural systems are considered random because
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(1) the parameters in the constitutive laws governing behavior of the struc-
tural materials are random, and/or (2) the structural geometry does not
precisely match the intended configuration. (There is another type of uncer-
tainty that has been mistaken for randomness and that is modeling accuracy.
Mogel inadequacy is a systematic error and will not be directly addressed in
this study.)

The purpose of a reliability analysis is to compute the probability of
survival of a structure. Reliability computation is difficult when the struc-
tural response is nonlinear and has large deflections. Therefore, one of tne.
ultimate goals in reliability analysis is to specify a technique for the com-
putation of reliability of structures executing nonlinear, large deflection
response.

The purpose of tnis investigation is to establish techniques for thne
analysis of reliability of dynamically loaded structures that behave in a
hignly nonlinear way. A progression of problem complexity will cover a range
of techniques from single-degree-of-freedom (SDF) systems subjected to
stationary inputs to multiple-cegree-of-freedom (MDF) systems subjected to
transient loads. There are four requirements to these approaches. First, the
random cnaracter of tne structural system must oe identified. Second, tne
random character of the loads must be described. Third, the random character
of tne failure criteria must be establisned. Finally, the fourth requirement
is to estanlish a method using the first three requirements to produce a
prediction of probability of failure of a structural system. Necessarily,
this fourth step uses an intermediate step of determining the probabilistic
nature of tne response and then applies tne random failure criteria to

establish the probability of failure or its complement reliability.

......................................................




2. LITERATURE REVIEW

There are several areas of research interest which have a direct bearing
on the topic under consideration, damage analysis of randomly excited systems
with random characteristics. The purpose of this literature review is to

summarize the results of some recent studies which relate to the present

topic. This literature review deals with investigations in the probabilistic kiﬁi
theory of structural dynamics, and investigations that characterize the appro- E;Eg
priate loading and system parameters using probabilistic models. Specific- 55;}
ally, first, some texts and papers discussing the characterization of dynamic tﬁzf
random structural response will be listed. Next, specific studies useful in {25
the analysis of failure due to peak response are given. The characterization éf;i
of damage is important for structures which can fail due to damage accumula- E:?
tion; therefore, papers in this area are discussed next. Then the studies ;i
which take advantage of the Markov property of a structural response and its ';ﬁf
measures will be consigered. Finé]ly. some pépers which discuss the random Eig;
character of environments and structural systems are given. i;i?
There are several texts which deal with many aspects of the probabilistic gﬁé
theory of structural dynamics. Among these are the books by Lin (Ref. 1), %?E
Cranaall and Mark (Ref. 2), Newlana (Ref. 3), Crandall (Refs. 4 and 5). and Eg?i
Clougn ana Penzien (Ref. 6). These books treat, in detail, the problem of E;i
computation of response moments for structural systems. -In particular, these &iﬁ
bDooKs present tecnhnigues for fﬁnding the moments of the structural response of 5?;;
linear SOF, MOF, and continuous systems. excited by stationary and nonstation- :i:%
ary random inputs. The systems considered all have deterministic. constant %f?
parameters. Some relatively simple, nonlinear problems are also considered. fi;
Eff

o3

1 ;;;
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For example, some approximate means for computing the response moments of gﬁ}
nonlinear, elastic, SUF structures are given in Reference 1. These texts also . éié
. consider such problems as the first passage problem for linear SDF systems, g;;
?: the fatigue problem, and the Markov character of the response of systems SEE%
lﬁ excitea by white noise. ’.E
- Many general papers broadly characterizing one or more aspects of struc- ?;
5 tural response to a random input have been written. For example, the paper by :
:3. Rice (Kef. 7) treats the response moments of linear and simple nonlinear E}‘
_. systems. [t also characterizes tne frequency of passage of a response random ;_ﬂ_
;; process beyond a barrier of fixed height. The paper by Ang (ref. 8) gives a f;:
| methoa for computing the response moments of a linear system, and then shows ~if
a0w TO use these Tor Tirst passage ana other computations. Tne papers by ;;?
Wwirscning and Yao (Refs. 9 and 10) and Bogdanoff, Goldberg, and Bernard ;iﬁ:
(Ref. 11) evaluate the response of linear structures to earthquake-type dis- ~ é;i;
turbances and assess structural safety in light of the response. Uhlenbeck ;1%
and Urnstein (Ref. 12) and Wang and Uhlenbeck (Ref. 13) consider the Markov ) jz;
character of tne response of linear systems to white noise input and use this ;:gi
to derive the Fokker Planck equations for these systems. Tney then solve the F%;
Fokker Planck equations to opbtain the transition probabilities for the struc- A i
tural response. Caugney (Ref. 14) derives and solves the Fokker Planckx equa- 3
tion for nonlinear elastic systems and obtains the response moments and E—;
transition prooapilities for the structural response. Goldberg, Bogdanoff,
and Sharpe (Kef, 15) and Toland and Yang (Ref. 16) analyze the response of
simple, nonlinear, elastic structures and evaluate response moments and first !Tv

passage probabilities. Vanmarcke, Yanev, and De Estrada (Ref. 17), Paez and

Yao (Ref. 18), and Iyengar and Iyengar (Ref. 19) characterize tne response of
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SDF hysteretic structures. They compute (1) moments and first passage

::_-.:'1
» %
probapilities for the displacement response, and (2) the moment of accumulated N
plastic strain and permanent set in the structures. Wen (Ref. 20) specifies a grv:
o
ey

]
3
L

means for analyzing MUF hysteretic structures. He places each hysteretic

---
x‘.|..l
r “.4
V.8

spring witn an equivalent, higher order, linear spring. Response moments are

- then analyzed. §$§j
; Investigators interested in identifying the probability of failure of a Eég;
ii structure often consider the first passage problem, or equivalent peak ééig
response problem. mMany of these investigations consider SOF systems. For Ej:
example, the papers by Yang (Refs. 21 and 22), Yang and Shinozuka (Ref. 23), ;f;;
Roberts (kefs. 24 and 25), Lin (Ref. 26), and Corotis, Vanmarcke, and Cornell iifi
(Ref. 27) use various techniques to find the first passage probability for a0
linear, SDF oscillators. Paez (Ref. 28) specifies a technique for computing §§§§
tne peak response probapility distribution for an SOF system. In a general ;iié
paper, Ang (kef. 8) defines an approximate means for computing the first -

passage probability for an MUF system. Koopmans, Qualls, and Yao (Ref. 29)

BN AN
i e
L N .’l A

.
’
(*
< A
2 Feru

and kojwithya (rRef. 30) specify bounas on the peak response probability

distribution for linear, MOF systems.

e

In assessing the chance of failure of a structure, the potential for ?*?i

o~

accumulation of damage must be considered. Several authors have suggested RN

bn:-k ’

codes and formulas for classifying the damage in a structure. For example,
qualitative measures of structural damage are discussed in papers by Whitman

et al. (Refs. 31 and 32), Housner and Jennings (Ref. 33), Hart (Ref. 34), and

Hsu (Ref. 35). Quantitative measures of the damage accumulated in simple

’ e o
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structural members are also available. For example, the papers by Yao and
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munse (Kef. 3v), Tang and Yao (Ref. 37), Oliveira (Ref. 38), and Kasiraj and
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Yao (ref. 3Y) suggest quantitative measures of accumulated structural danage;

Some of these measures of damage are based on Palmgren-Miner-type damage

accumulation laws. Some literature surveys on the subjects of damage assess-
ment and measures of damage have been written by Yao (Refs. 40 and 41).

in investigations into the probabilistic structural response of mech-
anical systems, researchers have sometimes taken advantage of the Markov
character of the response to white noise and filtered white noise inputs.
notably, in studies of the first passage probability for linear system
response, Yang and Shinozuka (Refs. 42 and 43), Rosenblueth and Bustamante
(Ret. 44), Gray (Ref. 45), Crandall, Chandiramani, and Cooke (Ref. 46), and
Paez and Yao (Ref. 47) nave used the Markov character of the response. All
these studies concern linear, SUF structures. In addition, Bogdanoff
(refs. 48 and 49), bogdanoff and Krieger (Ref. 50), and Paez, Tang, and Yao
(Ref. 51) have shown how a Markov chain approach can be used in the failure
analysis of structural systems. When the damage transition probability matrix
is provided, and when the probability distribution of the failure-causing
damage level is known, their approach can be used to find the probability of
failure of a structural system. ‘

The literature review in this section summarizes investigations into
various aspects of the probabilistic structural response problem. Many papers
dealing witn the probabilistic theory of linear structural response are avail-
anle, and some of these are mentioned in review. Fewer papers analyzing the
peak response of linear structures have been written, and even fewer deal with
nonlinear structures. Also, only a few papers dealing with the accumulation

of damage in randomly excited structures are available, though much effort is

being devoted to tne damage accumulation problem at this time.
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Damage accumulation models may also be affected by tne development of

more sophisticated constitutive models. There is extensive work being done in
this area of constitutive modeling of concrete soils. Generally the failure
criteria will be more adequately specified as material models are developed
that are more accurate in failure regimes. None of the probabilistic papersA
reviewed considers the large displacement response of structural systems. A
few of the papers in the literature take advantage of the Markov character of
structural response; most of these consider the linear response behavior of
linear systems. This property of structural response is important in the
development of this investigation and can be extended to systems that respond
in a nonlinear way.

The random cnaracter of tne environment for psotective construction has
been addressed in some detail, but the information is not available in the
open literature. Finally, there are some papers that report the specific
random cnharacter of some of the environment apd structural system parameters.
For example, Reference 52 summarizes recent studies in the strength of

reinforced concrete.
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II. STOCHASTIC ANALYSIS OF SIMPLE MECHANICAL SYSTEMS

1.  INTROUUCTION

In this section, some SUF systems afe analyzed using conditional prob-
ability approaches. Linear elastic, nonlinear elastic, and hysteretic SUF
systems are analyzed. The parameters of most of the systems considered are
deterministic constants; however, one of the systems analyzed is assumed to
have a random capacity for damage accumulation. The input used to excite most
of the systems considered here is a band-limited white noise random process.
In one instance, nowever, a nonstationary random process is used to excite the
system under consideration.

Several types of probabilistic results are obtained for the SOF systems
analyzed in this section. First paSSAge‘brobabflities for some measures of
SuF system response are computed. Finally, the failure probability is com-

puted for a system assumed to degrade following a particular damage law.

2.  FIRST PASSAGE OF LINEAR SUF SYSTEMS

a. Theoretical analysis--In this section a class of first passage prob-

lems for SUF systems is solved. In order to solve the first passage problem,
tne probability that some measure of system response will pass outside a pre-
astablisned barrier at, or oefore, a specific time will be computea. 4hen the '
response level corresponding to failure in an SDF system can be defined in _L*%
terms of one response measure and when it is deterministic and xnown, tne .

probability of failure of an SDF system can be computed using a first passage

analysis.
The only requirements placed upon the input in the following analysis

are: (1) that it be accurately characterized in discrete time, and (2) that

16
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the values of the input random process at consecutive time points be indepen-
dent. A temporarily stationary input random process implies that the input is
a band-limited white noise. In the analysis of SDF systems, the assumption of
a white noise input is not severe. This is true since, in general, only that
value of the spectral density of the input near the natural frequency of tne
system under consideration is important in its influence on the structural
response.

First passage analyses can be executed using a Markov chain framework.
The only quantities that must be generated are the transition probabilities.
Une means for generating transition probabilities will be presented in this
section.

The equation of motion governing the response of é linear, base-excitea

SOF system is

.:y+2;wn.;+uf‘y=-; (1)
where y is the relative displacement résponse of tne SOF system, ; is the base
acceleration, w is the system natural frequency, ¢ is the damping factor, and
dots denote differentiation witn respect to time.

In order to obtain fhe transition probabilities required for the proba-
bilistic analysis, this equation is first discretized in time using a central

finite difference approximation. The resulting approximation to the joverning

equation is

Yiel = &5 ¥y Yyl T Yel

[ AV
~—

Zw twd oy o= ox, J= 0,000

at2 " at ncyo et 1

Here tne equation of motion is written for time t:‘j = jAt, j = 0,...,N; at is L;j
tne discrete time interval for the problem. Equation 2 can be solved for yj+1 ;i;
and the result is \
: g

D

S
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Yia1 * (1 + gw, At)’1 [Atz ;j + (At? uﬁ - 2) yj + (1 - Zw, at) yj-ll .
j=0,...,N (3)

When the system parameters are constants and input ‘excitation is a
stochastic process, the SDF system response is also a stochastic process.
In this case the system response is still governed by Equation 3. When

the actual value of the input at time t. is specified and the response

J
values at i and tj are known, the the response value at t. , can be

J+

approximately computed. In the following it has been assumed that the system
parameters are constants and the input excitation is a stochastic process.
It is assumed that the random variables composing the stochastic process are
independent at consecutive times, and that the probability distribution of the
input is known at each time tj, j=0,...,N. To be consistent with standard
random process notation, the symbols denoting response and input in Equation 3
are capitalized when they represent stochastic processes. The input stochas- °
tic process is denoted Xj, J =0,..., N; the response stochastic process is
Yj, J = 0,...,N.

The transitional probabilities governing the SDF structure response will be
obtained using the definition of conditional prohability and Equation 3.

The probability that the structural response falls in the interval (ya, yb)

at time tj+1, given that the response at time t

time t. is y; , is given by
J k1

j-1 is Yo and the response at

= = .-1
?(ra < Vg1 < 9501 Yo' '3 Ykl) L
P + -l a2y 2 2 v
* Ply, < (1 + zw, at)"" [at Xy + (8% g - 2) Yy v (1 - qup at) ¥y ]
< ¥y g Y3 " y"1)’ j =0, N (4)

18
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The expression on the left is simply the conditional probability described
above. The expression on the right simply uses the definition for Yi+1s
established in Equation 3, in place of yj+1'

Since specific values for the response at times tj_l and tj are given
in Equation 4, these values can be used inside the inequality on the right-
hand side of Equation 4. Moreover, the inequality can be solved for the

input random variable, xj. The resulting expression is

P(Va Vg1 E)V5e1 = K V5 ykl)

Ya = W * N Ya = ¥
s p 1 O+Zcm 0+u2 <;(. <
Atz n = 2At nyk1 j=-
Yo = Wk, * Yy o= Y
22 M T N AR B SR T (N

. (5)
When specific values for y,, ¥p, ¥k, and yx, are provided, along with values
for the system parameters, then a numerical value can be evaluated for the
probability in Equation S. This is true since the probability distribution
of 'X.J- has been assumed known.

To establish the framework for the computation of an entire collection of
probabilities characterizing the structural response, the present problem is
now discretized in response space. let =<, and Cy represent the lower and
upper first passage barriers. The first passage probability is the probabil-
ity that YJ. j = 0,...N assunes a value outside the interval (-ca, cb) at or
before the time t,. The displacements are discretized into M equally spaced

J
values in the range (-ca, cb). The displacements are

19
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N Yo = (k = 1/2) ay - ¢, ," Kk =1,....M (6"
)
i_ where

by = (c, + cp)M (6a)
i Now the probability that the r.'esponse at tj+1 assumes a value in an

interval of width Ay surrounding the displacement y, can be computed by
using yx - Ay/2 in place of y, and yy + Ay/2 in place of y, in Equa-
. tion 5. When the response at 1::,_._1 fs assuned to be in (yk - 8y/2, Yy
| + ay/2], then the response equals yx. This assumption makes the ran&om
variables in the stochastic process, Yj, j = 0,...,N, discrete valued. The

assumption results in an accurate representation of the response when Ay is

A L I

small enough. Mathematically, the assumption described above is written

Ean

ply. . = Y, 2y , VY =
(j+1 yk2| j-1 yko j ’kl)

A

. j =0,...,N
=P(y - ay/2 <Y <y +Ay/2Y_-y,Y=y)
) 3+ 7 7k, Y41 ‘o' TR kgukgaky = 1M

' | (7)

: The numerical values of all the transition probabilities represented by
Equation 7 can be computed. In all, there are M3 values. These probabili-

i ties characterize the transitions of the response from points within the

: first passage boum;s at times ti-1 and tj to points within the first pas-
sage bounds at time tj...l. These probabilities do not represent all the

' possible displacement versus time paths that the SDF system might execute
during response to a random input. Only those paths remaining within the

interval (-c,, cb) are represented. Those transition probabilities which

A

correspond to paths which originate or pass outside the first passage bar-

riers will not be used in the present analysis. To completely characterize




its probabilistic response, starting probabilities for the SDF system under
o consideration must be specified. These starting probabilities are the values
I: of the joint probability mass function (pmf) of the random variables Y_, and
" Yo. Yo is the first random variable in the response stochastic process; Y_,
is a random variable defined at the arificial time t_, = -at. Y_, is defined
.; solely to facilitate characterization of the probability distribution of the

starting velocity. The joint pmf of Y_, and Y, defines
p (y.y )-PY_=y.Y=y), knoky = 1,...,M (8)
Y_1YoVk' 7Ky ( 1 L kq 0°"1 .

Generally, the system considered will have a zero start condition, This
‘f means that the system starts with zero displacement and zero velocity. This

zero start condition is characterized by the joint pmf

1’ yk’_yk‘o

1 .
Py Y(yk'yk)' (s)
o -Lotte 7L (o, otherwise

0

In situations where none of the discrete displacements actually equals zero,
the joint pmf is set to one at the argument (yko’ ykl) where yko = ykl is the
-, realization of the random variable which is smallest in absolute value.

With the information provided in Equations 5, 7, and 8 or 9, the proba-
" bility mass function of the response stochastic process can be propagated
thréugh time. First using Equations 7 and 8 the joint pmf of Y, and-Y, can be
obtained by recognizing that multiplying Equation 7 by Equation 8 will yield
the joint pmf of Y_,, Y5, and Y,. Summing ovér all kg will eliminate depen-

. dence Y_, and yield the joint pmf of Y, and Y,. Then this result is used with
:: Equation 7 and the same process to get the joint pmf of Y, and Y,, etc. The
result is, at time tj-l and t;. we have the joint pmf of YJ._1 and Y.. But

J
recall that the transition probabiiities, developed above, consider anly those

Y. So, in fact, the juantity

oaths remaining in the spatial intervai (- , ¢, ). e
o




P*(Yj-l ® Y, Yy = ¥ ), obtained in the manner described above, defines the
1
triple joint probability that (1) the response at time tj 1 equals Yy o and
= 0
(2) the response at tj equals Yy 0 and (3) the SOF system response has not
1

passed outside the interval (-ca, cb) at or before the time t (The star (*)

i

superscript is included on P*(Yj-l’ Yj * Y ) to show that only a portion of a
1

complete joint pmf is defined by the expression. The probabilistic

description of paths passing outside the barrier is not obtained.)

iﬁ Sunming this expression over all kg, yields
( ) g& J=0,...,N )
prly, =y | = P*(Y._ sy, Y. =y ) (10)
S G 7 AR A N kp= 1., M

This is the joint probability that the response at tj equals Yk, and the

system response has not passed outside the interval (-c, cp) at or

before tj.
When Equation 10 is summed over all k,, the "no passage® probability is
obtained. If T, is defined as the random variable denoting the time when

first passage of the SDF system relative displacement response outside the

interval (-ca, Cb) occurs, then

M

P(Ty > t5) = 3 p*(vj =yk), J=0,...,N (11)
This is the chance that no passage of the structural response outside the .F

spatial interval (-c,, Cp) occurs in “the time interval (O, tj]. The
first passage event is complementary to the event T, > tj; .
o
PTy S ty) =1 - P(Ty > ty) J = 0,..0,N (12) R
w'—""
This is the first passage probability function, the desired quantity, 7
22 1
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Note that, in order to use the present equations for the failure analysis
of a structure, the structure must behave linearly (or nearly linearly) up to
the failure point, and it must be assumed that failure occurs due to peak
response. Moreover, the system must be accurately modeled as an SDF system.

On the other hand, the input can be modeled quite accurately. The input
can be modeled as a nonstationary random process since the transition proba-
bilities defined in Equation 5 depend on the distribution of Xy and this
distribution may vary with j.

The analysis described above is limited to the consideration of first'
passage problems where the barriers are constant and define a spatial interval
('Ca’ Cb)' In fact, the analysis can be generalized to make the time doma%n
discretization vary with j. 0One could simply redefine the barriers at every
time tj and derive the discrete displacements as in Equations 6 and 6a. This
generalization would permit the performance of a probabilistic analysis of
failure in systems where the strength properties degrade.

Since only those paths remaining between the first passage barriers are
considered in the present analysis, only a portion of the probabilistic
structural response is characterized. In fact, the entire spectrum of poten-
tial responses could be accounted for by inclusion in the analysis of two
axtri discrete displacements; one of these would be above the upper 'imit,
Ch, and the other would be below the lower 1imit, -c,. All paths passing
outside the first passage barriers at a time t; would be iumped in these
two discrete displacements. The probability fhat a path originates outside a
barrier and then returns to a displacement value inside the barriers would be
set to zero. Using this approach guarantees that the probability mass func-
tion for displacement at a time tj would have elements which sum to unity.

The orobability that the system response occupies the displacement value
23
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above the upper 1limit, cp, or the displacement value below the lower

limit, «,, at time tj, would be the first passage probability.
Finally, note that the probability distribution of the stochastic' process

input has been left indefinite in Equation 5. In many situations the input
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will be defined as a normally distributed stochastic process, and in such

cases Equation 5 will be specialized to

JAAVNESN I Yy Y5 " %)

-1 yb - Z.Yk + 'yk ‘yb - ka 2
= @ |o. + 2Zw +to .y, -u
J AtZ n = 2at n k1 J
a2 Zyk1 * Yy Yy Yo,
- 0 °j Atz + zcun T + wn ykl - uj 'y j = 0,...,N

(13)

#(-) is the cumulative distribution function of a standard normal random
variable; uj and 95 denote the mean and standard deviation of the input

random process at time tJ-.

b. Numerical examples--A computer program which executes the analyses

developed in the previous section was written. A listing of the computer
program is included with this report in Appendix 8. Some numerical examples Lr‘]
demonstrating the use of the computer program are summarized in this section.

The computer program computes the first passage probability function for
a base-excited. linear SDF system. The input excitation is a stochastic pro-

cess composed of a sequence of independent normal random variables. Each

input random variable has mean zero and the standard deviation can decay

exponentially with time. Zero start initial conditions for the SDF system

are assumed.
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One important feature of the program is the amount of storage required é%é
for the discrete functions used in the analysis. When an M-division spatial ;;é
discretization is used in the problem solution, M3 storage locations are %:ﬁ
required to hold the transition probabilities of Equation 7. In addition, g&;
M3 storage locations are required to hold the products between the joint §§§
probabilities and the transition probabilities before the summation is exe- Eif
cuted. (Improvements in the analytical approach which diminish the required *ig
amount of storage are described later.) Other functions increase the storage ;i?
requirements as functions of M and M2; therefore, more than M3 storage loca- ;?S
tions are needed for this program. Clearly, this limits the range of discret- E;E;

ii , izations that can be used in problem solutions. ;ii
-

o The program listed in the Appendix was actually written to solve time and

space normalized versions of the problem discussed in the previous section.

In particular, the program performs a natural frequency independent computa-
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tion, where the probability of first passage at or before a number of cycles
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of SOF system response is determined. In space, the upper and lower first

passage bounds are written as a multiple of the root mean square (rms) value

Ve v
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of the stationary response of an SDF system when the input is stationary.

'

The first problem to be summarized is the €irst passage of 31 base

ad M K

R

N excited, linear SOF system. The input excitation is a stationary random
- process. Specifically, it is a band-limited white noise. The standard devia-
lj tion of the input is 1is£ed in Table 1. The §ystem and computation param-
eters are listed in Table 2. The first passage probability was determined ?7:
- at each computation cycle and the results are shown in Figure 1. (Note »\.

that curves relating to two examples are given in Figures 1 and 2. The
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TABLE 1. SYSTEM, INPUT, AND COMPUTATION PARAMETERS o

FOR FIRST PASSAGE PROBLEM s

E_'_v':

at = w/(Swp) :-:2

Cy=Cp =9, * -537 ay (= rms value of system response &fﬁ

y 4;0& to stationary input) j}%

M= 20 o

o = 0.714 (standard deviation of the acceleration input) . b

curves marked “stationary” are connected with this example; curves marked R
"nonstationary* are connected to a later example.) The first passage proba- 335
bility 1s graphed as a function of time in Figure 1. In this example, the Eif
first passage probability, at a particular time, is the chance that the dis- 5
s

placement response of the structure has passed outside the spatial interval 5y
LY

LN

(-ca, cb), at or before that time. As expected, the first passage probability

B

increases with time. Other examples, not summarized here, show that when the
barrier values are increased in absolute value, the first passage probability e

function increases more slowly with time. When the barrier values are

ORI
s .l "1 ." :
L

necessarily so.

decreased, the first passage probability increases more rapidly with time.

When the excitation stochastic process is stationary, the first passaae »
probability always approaches unity asymptotibaIly, as time increases. The f_;
reason is that a certain portion of the probability for response paths within %F:
the barriers 1is lost to paths outside the barriers at each step in the E;;S
computation. When the input is nonstationary and decaying, this is not ;EE

—
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;; The second problem to be summarized also concerns the first passage of a Ef{

> pase-excited. linear SOF system. In this case, however, the input is a non- :i;
"N stationary random process. The input is a sequence of independent, mean ::;
", gl Byt
au e

) zero, normally distributed random variables with standard deviations that > Ei

: _ oS
Q- vary as a function of time. Specifically t‘ﬁ
- -0.05 u_ t
0.714 e t>0 S

ag(t) = (14) e

0 t<o o

b x

This function is graphed in Figure 2 along with the constant value of stan- ;?;

Ig dard deviation from the previous problem. The first passage bounds were cho- ﬁ;:
sen equal in magnitude to those used in the previous problem. ;Q

The first passage probability is graphed as a function of time in Figure L«]

1. Since the input used in this problem is less severe than that used in the
previous problem, the first passage probability is lower at all times. ' e

The first passage probability computed here does not approach the value unity o

as t increases. This implies that first passage in this system response is ;:;:
not certain. The reason for this behavior is that the input becomes hegligi- o

ble as time progresses.

Y

=

- R
N c. Computational enhancements--The conditional probabilities that dis- th
placements yy,, k2 = l,...,u will be realized at time tj,), given the BN

displacement combinations at two previous time steps; Ykg and Yky» Kook

*+ 1,...,M at times tj. and tj can be assembled in a computer code as a

.} three-dimensional array. When displacements are discretized into M spatial
- increments then the array becomes an M by M by M array requiring M3 storage
o locations. As discussed previously. this array is treated as a tensor and is

< multiplied by the state probability matrix which fs composed of the probabil-

ities that the displacements actually were at specific discrete locations at
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the two previous time steps. The multiplication yields the joint probabfii-
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ties that the displacements are at three locations at times tj-l’ tJ. and tj+1’ ;:
and these probabilities are also stored in an array of size M3, This multi- Eiéi
plication is conceptually shown in Figure 3. The next step in the analytical ;§S
process 1s to sum the vectors in the j-1 direction into scalars. This pro- ;;ﬁ
“l duces an M by M array that is the joint probability that the displacements are SES;
i. at discrete locations at times tJ and tj+1. Note that these form the state gi%
N probability matrix for the next incremented time step (where j+j-1 and j+1+§). zﬁfﬁ
The summing process is conceptually shown in Figure 4. ;%ﬁ

By simply noting that matrix multiplication is a series of vector opera-
tions it can be shown that only a single vector of the conditional probabil-
ity tensor need be formed at one time. The shaded portions of the conceptual
figure illustrate that a single vector of the conditional probability tensor
multiplied by the state probability matrix yields a single vector of .the
Jjoint probability tensor., This vector can be summed into a scalar element of
the state probability matrix for the next time step (Figure 4). When this
observation is used in the computer coding algorithm. the storage requirements
for the computational process are substantially reduced. In particular. the
storage requirement is reduced from 2M3 + M2 locations to M2 + 2M locations.

Wnen the input excitation is stationary, tine conditional probability ten-
sor is composed'of elements that are constént throughout the computation.
Therefore, the approach described above requires the computation of these

constants each calculational time step. This means that storage regquirements

are reduced at an increase in computational time. However, the computations

performed in this project were done on a CRAY computer and the elements are

fil formed as a vector operation on the CRAY computer. Therefore, the ‘ncreased o
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Figure 4., Graphical concept of tensor summation

in conditional probability analysis.
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computational time is not severe. Furthermore, many of the inputs which are
of finterest are nonstationary and the conditional probability matrix must be
recomputed each time step regardless of the scheme. Therefore, the above
change in the calculational process represents an important step in reducing
storage requirements. In fact, this general approach may allow the process
to be expanded to multiple degrees of freedom without surpassing computer
storage requirements. |

Other computational enhancements are available. For example, 1t would be
much more efficient to compute first passage probabilities if single-step °
memory were required rather than the two-step memory shown. Recall, the two-
step memory came about as a result of the central difference scheme used to
approximate the differential equation. One method to diminish the memory
would be to use an approximation that would require only single-step memory,
but the accuracy would suffer. Another approach is to identify special fea-
tures of the response such that tne memory may be reduced. An example is that,
for lightly damped SUF systems, the response to white noise input is narrow
pand. That is. given that the response is at a peak. at a given time. the time
at wnich it will be a minimum will be approximately one-half the natural period
of the system later. This half-cycle response information can be used to

reduce the computational procedure to single-step memory.

To demonstrate this approach the scheme -developed above'has been used to
compute the probability distributions of response amplitudes after a hailf
cycle of response, given that the start conditions are zero velocity and any
of the discrete displacements defined in Equation 6. These probabilities are
known as half-cycle transition probabilities, and since the analysis considers
only those paths remaining in the spatial interval ('Ca' cb), these probabili-

ties have special meaning. Specifically, these probabilities define the

) .
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chance that the SOF system response will be at an amplitude value ak1 at the
end of a half-cycle and that the response will not pass outside the interval
(-ca, cb) during the half cycle, given that the response started with velocity
zero and an amplitude ako at the beginning of the half-cycle.

The sequence of mathematical operations used to obtain the half-cycle
transition probabilities is as follows. Set the starting probabilities,

gquations 8 and 9, to

LT L "I L

0 0 1 0

Py_,.Y (yk % )’ (15)

| B AARY 1 n, otherwise

Next, divide a response half-cycle (duration m/w,) into an integral number

of parts, n'. Apply the process n' times, starting with pY-xYo(yko’ ykl)

above to get PY . IY (yko' ykl). Finally, apply Equation 10 to obtain the
n'-1n

distribution of response values after a half-cycle, considering only those

paths which remained between the barriers.

P (v ) 2” p Ky = 1,...,M (16 =
TN )t Y » Y ). =1,..., ,
" k1 kg2l Yn'-lyn'( k k1 1

0
Let AJ, J = 0,...,N' be the SDF system amplitude response stochastic
process, and let Aj be the random variable in the process denoting the
response ampliitude at half-cycle j. Then the half-cycle transition probabil-

ities derived using the scheme described above are

j=0,...,N

-: * [] '.'-.‘1
i Pa A.le% )'P(Yn'ak)' (17) Py
! o185 Uiyl g 1 Kgeky = Loeeo s ,V;,1
4

3
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where the right-hénd side is obtained in Equation 16. Since the computation
scheme has been used to compute the transition probabilities given above, it
: fs convenient to choose the values of ako and «1"1 as those defined in Equation
. 6. The star (*) superscript is included on the expressions writtcn above to
_I denote the fact that only the response paths remaining in the spatial interval
. (-ca, cb) are included in the computation. Paths which connect ako to ak1 in

Equation 17, but pass outside (-ca, cb) during the half-cycle are neglected.

The transition probabilities presented in Equation 17 provide the same
sort of information as provided by the two-step memory transition probabili-
‘ ties in Equation 7. The obvious difference is that here only one memory
step is included. The need for one item of information in the memory has
been eliminated. since only the response at half-cycle points is considered.
At both the beginning and end of every half-cycle the velocity is zero;
therefore, the velocity values need not be considered. When a, two-step
memory is used, both (average) velocity and displacement at times tj-1 and
tj influence the response at tj,. The disadvantage in considering only
the response at half-cycle points is that a half-cycle duration must be
chosen for use in the computation to obtain the probabilities in Eaquation
17. This is chosen as r/wn for the SDF system. While this is the average
half-cycle duration for a system responding to a random input, the actual
half-cycle duration is random. Some error is committed in using one value
for the half-cycle duration, but when danpin§ is light (g < 0.20) the error
is small and is more than justified in reducing the memory requirements.

Figure S5a shows the distribution of response amplitudes after a half-

cycle of response when the upper and lower limits are chosen as cp = 4oy

and <<, = -4ay, and the starting amplitude is chosen as 3.8 oy- Also
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shown is a displacement path. the response might execute during the half-
cycle. The lines on the right represent the probabilities that the various
amplitudes will be realized and the response path will remain in (-4oy,
4gy), given that the starting amplitude is 3.8 oy These probabilities form
a vector of transition probabilities given the starting amplitude of 3.8 oy.

Figures 5b and 5¢ show other distributions of amplitude response proba-
bilities given starting amplitudes of 2.2 oy, and 0.2 oy. These graphs
present information similar to that described above,

Half-cycle transition probability vectors corresponding to each of the
beginning amplitudes can be generated. These vectors can be combined,
sequentially, based on tne starting amplitude, and the result is a transition
probability matrix. Only those paths remaining in the spatial interval ('Ca’

cb) are included. The transition matrix is defined as follows.

* * * )
ij+1|Aj(°1|°1) ij+1|Aj(°z|°1) h ij+1|Aj(°M|°1)

»

*
Pas 401122 ij*1|Aj‘°2|az)

*

p (ayfay)
Al uled g,

* LR ]
[Pj+1] =
. . |

. !

L.ij*llAj(allaM) pAj+1|Aj("’2|°M), T Pap|a (ol J

The values of the pmf for the various amplitude states at half-cycle zero form

* * .
a vector [Po}, where {PO} is defined as

..............................................................
....................
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{pg} = < > (19)

;pAo(aM)J

The star (*) superscript indicates that only the probability of those ampli-

tudes within the interval (-ca, cb) are included in {po}; therefore, the
*

sun of the elements in {p,y} may not be one. Then the distribution of ampli-

tudes at hailf cycle j is

AR R NC IR e (20)

where only those paths remaining in the spatial interval (-c,, cp) are
considered in the computation.
The probability that no passage of the SDF system response outside the
interval (-c,, Cp) occurs between half-cycle zero and half-cycle j is
M

P(Ty > wj/w,) = kzl Pa () > Jo= LN (21)
= J

T, is the first passage time. Pa (ak), k=1,...,M are the elements in the
5 .

*
vector {pj}. Equation 74 yields the no-passage probability for the time
interval (O, 'J/”h)’ In terms of this quantity, the first passage probability

can be written

p(Tl i Wj/tﬂn) =] - P(Tl > nj/.'un) R J =z 1,.._,Nl (22)
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The first passage probability can be computed as a function of time when ffz'

the procedures outlined above are followed. The computations performed using EF?
these half-cycle transition probabilities are subject to the assumptions made E§§
in the previous section. Eéii
_ When the input excitation stochastic process is stationary in time, the Ei;é
present technique for analysis of first passage probabilities of a linear, 5&5
base-excited SDF system will yield a computational time savings proportional iij
to MN/N'. This factor will be considerable when the spatial discretization :f:
is fine (M is large) and the time discretization is fine (N/N' is large and 3§§
both analyses cover the same interval of time). When the input is nonsta- 3;&
tionary, the present technique does not result in computational time savings. ;?f%
Expansion of the above analytic approach to highly nonlinear or MODF i
problems is not direct. Tne Dasic assumption of narrow band response would not fli
in general be true in these cases. However. tne concept of identifying special gﬁf
features of the response or the computational scneme holds. For example, éﬁﬁ
because of stability, the displacement of a node in a finite element scheme is :Eéi
bounded by the time step. There are certain displacements that have absolutely Ff%
zero probability of being reacned in a singie time step. Therefore. it may be : S
possible to extend the above concept into solving the much more difficult ;&
problems of nonlinear MOF problems. Ef;
3. FIRST PASSAGE OF NONLINEAK ELASTIC SOF SYSTEMS
a. Theoretical analysis--Once the first passage problem for a linear %;F
elastic SOF system nas peen solved, it is a relatively simple matter to E;E
extend the analysis to nonlinear elastic SUF systems. The analysis presented ' ;ii
39 5
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above is extended in this section to include the nonlinear elastic case. The

s’
a

PAIPLI
.
» *e

oty

LN

input used to excite the SDF system is the same as that used previously; that

s

.
o,

v

is, the input is a sequence of independent, mean zero random variables.

% gt e gR B o

e r
st
i o3

The equation of motion governing the response of a nonlinear elastic,

base-excited SDF system can be written

AOEN A XS
OV <2
Tt Ta

“ . m 1 “ .

j+ 2 a3, y 2] L (23) .

n - z +
t=1 ) B

where y is the relative displacement response of the SDF system, x is the

base acceleration, w, is the "small displacement response” natural fre- Q”i
b
guency of the system, g is the damping factor and dots denote differentiation e
with respect to time. This equation governs the response of a system whose thf
restoring force is an odd polynomial function, of degree 2m - 1. g54
-

To obtain from this equation the transition probabilities required for a
probabilistic response analysis, first discretize the equation in time. When

the central difference approximations are used to replace the derivatives in

the above expression, then e
- Yisy = 25 * s Yiep = Y5 m . 3
) j+1 j j-1 . 2 +1 -1 2 (22-1) o
- Zw + 3¢,y = x, , -
L-T At? n At n 2=1 2 J J ,:_ .
¢ -
[ J=0,...,N (24)
;3 This equation governs system motion at times t; = jat, § = 0,...,N. Re-
arrangement of this equation yields an expression for Yj+1- i";
1,2 2 2 & (22-1)
Yipp * (1 + gu at) [At x; + (At WS 3, C,Y: -2y,
j+l n J n& oYl J
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When a nonlinear elastic system is excited by an input stochastic pro-
cess, the response at tj+1 is approximately governed by the above equation if
the system parameters are constants. To represent the approximate stochastic
relationship between input and response., the iower case yjs must be replaced
with upper case Yjs and the lower case ;j-with }j' Then using the definition
of conditional probability, an expression for the SOF system response

transition probabilities can be obtained. That is.,

p(’a Yy S1Y5e1 = Vi V5 ykl)

Yy, =2y, *+Y Y.y
0 a k1 k0 v 22 a k0 . uz
2 n ZAt n

at

<X, <

i= at

Yp = Wy, t X Yp = Y
1 0, > 0, .2
l ) Zat “n

Y51 Yy Y5 7 y“1) N R (26)

This expression is the nonlinear system equivalent to the transition proba-
bility expression derived in Section II.2.a for linear systems; and it is
derived in the same way and can be used in exactly the same way. It is noted
that not only stability of the finite difference equation must be properly
addressed, but that adequate time step is selected to propagate probability
outside initial conditions. .

ﬁhen the system response displacements are discretized, Equation 26 can
be used to obtain the transition probabilities for the discrete-time/discrete-
space SDF system response stochastic process. The assumptions and notations

regarding response displacement bounds are the same here as those used in

Section 11.2.a. The discrete displacements in ('Ca’ cb) are y, , k=1, ..., M

defined in Squation 6. The system response transition probapilities are

...........
.........
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P(Yj"'l = ykzle-l = .Vkoo Yj = ykl)

bt

J=0,...,N S
= P(y - Ay/2 < Y <y, + ay/2lY =y ,Y. =y ), N
ko J*+1 =k, Ij‘l ko* kg kgokpoky = 1,000 M :

. .\;::

(27) e

b

where the expression on the right-hand side is evaluated using Equation 26. -

Now when the starting joint pmf of the response stochastic process is

[ A
J ML

specified as in Equation 8 or 9 and the probability computation is marched out

4

D o4 LR
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in time, as before, first passage results equivalent to those obtained in *
Section I1.2.a are obtained for the present problem. The analysis required
here is precisely equivalent to that described in Section I1I.2.a, following
Equation 9. Some numerical examples are presented in the following section to
demonstrate the results of this analysis.

In order to use the present approach for the practical failure analysis
of a real system, it is necessary that (1) the system be aCCuratgly modeled
as a nonlinear elastic, SDF system, and (2) failure occurs due to peak .

response. "T:

The computational enhancements discussed in Section [I.2.¢c can be

applied in the nonlinear first passage analysis. The first technique dis- ?Iﬂi
cussed in that section can be applied without modification. The second com- éfﬂ
putation scheme, the conversion of the response random process from a condi- -
tional probability random process with two-step memory to one with one-step
memory, can be applied here, but only in a restricted way. An underlying o
assumption in the establishment of that computation scheme is that the Esf;
response will be narrow band. When the degree of nonlinearity in SDF system :?;;i
AL

response is not too great, and when system damping 1{is 1light, then the i-;ﬁ
response will be narrow band. When the response non1ihearity becomes great, : 2

the response will cease to be narrow band. Ductility ratios of qreater than




1.5 and damping coefficients of greater than 20 percent of critical would
be considered limits for these approaches.

The following analyses characterizing the response of nonlinear SOF sys-
tems will make the assumption of narrow band response and use the computa-

ional procedures previously discussed.

»

oty Ay W
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b. Numerical examples--The first computer program listed in the appen-

R
v

*

5

dix, and used to solve the linear first passage problems, can also be used to

raN
¥
l. ®

solve nonlinear elastic first passage problems. Some numerical examples

demonstrating the capability of the computer program to solve nonlinear first

st
LN

-
o

AR

passage problems are presented in this section.

The computer program computes the probability of first passage of the
response of a nonlinear elastic, base-excited, SDF system, outside the spa-
tial 1nterva1. (=ca» cp). The response is excited by a stochastic process
input composed of a sequence of zero mean, normal random variables. Zero
start initial conditions for the SDF system are assumed.

Three first passage problems are presented in this section. The system
parameters used in Equation 23 through 27 are summarized in Table 2. The
input is a band-limited white noise whose standard deviation is qiven in
Table 2. The first passage probability was computed for each of the three
systems (Hnear,.hardening, and softening), and the results are shown in

Figure 6.

.......................................................
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TABLE 2.

T W T T T T IR T T L T L LT
...............................

SYSTEM, INPUT AND COMPUTATION PARAMETERS
FOR NONLINEAR FIRST PASSAGE PROBLEMS

¢ = 0.08

Linear system: m =1, ¢c) =1

at = x/(5uy) Nonlinear hardening system: m =2, ¢c; =1, ¢c; = 1.5
M= 20 Nonlinear softening system: m = 2,6 ¢; =1, ca2 = 1.5
oy * 0.714
At

= c = g = o“

a b Y 4""3n X
'l L3 L RS v

: Softening-\

Z 0.8} .

2 Linear

£

08_ 0.6 Stiffening‘! 3

&

a Stiffenin

2 0.4 > ’ 7

& Force

s Linear

E 0.2 \-Softem'nj

Displacement
0 1 ] 1 : L L
0 0.5 1.0 1.5 2.0 2.5 3.0
Time (seconds)
.Figure 6. First passage probability for linear, hardening and
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softening SDF systems w_ = 2w.
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The hardening system tends to have lower response amplitudes than the
linear system; therefore, the first passage probability curve of the harden-
ing system is below the first passage probability curve of the linear sys-
tem. The softening system tends to exhibit higher response amplitudes than
the linear system; therefore, the first passage probability curve of the
softening system falls above the first passage probability curve of the

linear system.

4. PROBABILITY DISTRIBUTION OF SYSTEM RESPONSE

a. Theoretical analysis--Up to this point only the first passage proba-

bility has been used to characterize structural response. The first passage
problem has been pursued since (1) peak response can be an important crite-
rion in predicting system failure, and (2) relatively little work has been
done toward solving first passage problems. On the other hand, much work has
been done toward characterizing the probability distribution of the overall
response of a linear system. This section modifies the general approach
outlined in Sections 1.2 and I1.3 to compute the approximate probability
distripution of the overall response, rather than just the first passage
probaoility.

The main reason it is difficult to compute the probability distribution
of the overall structural response is that the procedures outlined in the
previous sections are ideally suited to tracking a portion of the response
probability remaining between finite barrie?s. The probability connected
with paths passing outside the barriers is discarded in succeeding computa-
tions. When the probability distribution of the overall response is of

interest, all paths must be accounted for and none of the probability can be

discarded, no matter now great the ampiitudes of the paths involved. ﬁfj
)
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Since the computational scheme used with the present approach cannot
account for all paths, especially those whose amplitudes are very large, a
compromise is made by taking two actions: (1) by setting the barriers of the
spatial interval ('Ca’ cb) at very large amplitudes so that the probabilities
associated with paths crossing outside the barriers are low, and (2) by normal-
izing the probabilities to a value of 1 at every step of the computation;

that is, by changing the probabilities, p; y (yko, Yi ), referred to in
3-1 !

Equation 10. On the jth computation interval, the sum
" y"1) (28)

is the no-passage probability through computation cycle j. If

p* (y, , ¥, ) is modified by multiplying it by (S*)'l, the result is
Veq¥y ke Yy

* -1 o

ij-l’Yj(yko' ykl) =) ij-l'Yj(ka’ ykl), ko’kl TRt 'ifi
(29) )

o

The path probabilities have been modified so that the chance that the ffq
response remains in (-c,, Cp) is one. When the interval (-cy, cy) Iis ;if
wide enough, the probability distribution of the response will be accurate. ;ij
The star (*) has been dropped on the left, above, since now the probability ij
for all response paths has been accounted for, though in an approximate way. | f
The distribution of the response can now .be computed at each time point, ;i f

and is obtained by summing the expression in Equation 29 over all k,. ;_1
M 2

DYJ(ykl) ) E%;I pYJ-l'Yj(yko' ykl)' R ) ;;ij

i
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The value of the above modification in computation scheme does not lie in
the capability it establishes to approximate the distribution of the response
of a linear SDF system. This capability already exists using a theoretical
probability analysis of linear continuous systems. Rather, its value lies in
the fact that the present analysis can be extended to nonlinear elastic and
hysteretic systems. This extension will be outlined in following sections.
The fact that the method presented above yields results corresponding to an

exact analysis will be used to check the accuracy of the present approach.

b. Numerical example--The analysis outlined in Section [I.4.a is

checked for accuracy in this numerical example. Three numerical éxanples
were solved. In each example the response probability distribution was com-
puted. The input is a band-limited white noise random process whose standard
geviation is given in Table 3. After tne response reached a steagy state. the
reéponse displacement pmf was recorded. The paramneters of the tnree probliems
solved are given in Table 3. In each problem tne lower and upper spatial
limits are defined in terms of rms response, once it nas reached the stationary

state.

Figure 7 shows plots of the response cdf's for each problem. Also shown
is the theoretical cdf for the linear SDF structural response. The statis- .
tics of the theoretical response are available, for example, in Reference 1. L*f1
The plots show that there is reasonable agreement hetween the theoretical ffj;
results and the results obtained in Section II.4.a. ifjfj
P
*TT1
5. DISTRIBUTION OF DISSIPATED ENERGY [N AN ELASTQ-PLASTIC SYSTEM }
a. Theoretical analysis--The analysis of structural reliability hinges :
on our ability to identify the modes of failure which might Tead to the E;::$
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TABLE 3. SYSTEM, INPUT AND COMPUTATION PARAMETERS FOR RESPONSE

PROBABILITY DISTRIBUTION PROBLEMS

e PRIV

At = 11/54»n
oy = 0.714

¢ = 0.08
Problem 1
M=10

= = 3 At ..'

Problem 2

M=20

Cb=-C

Problem 3
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Figure 7. CDF of linear system responses.




! demise of a structural system. Modes of structural failure can be gualita-
kl tively identified, and, to some extent, quantitative predictions of failure
can be made. But to date, the time of failure cannot be exactly predicted,

- even when the response history is computed exactly. The reason is that mate-

rial behavior is random. Yet in a reliability analysis some criterion must
be chosen to judge whether or not failure occurs in a response. The charac-
terization of the criterion can be deterministic or probabilistic.

Consider the elasto-plastic SDF system. Various criteria can be used to
judge failure in this system. For example, accumulated plastic deformation
can be used to detarmine when failure will occur, or a permanent set can be
used as a failure criterion. The amount of energy dissipated by the system
can be used as a failure criterion, or a combination of these factors can be
used as a failure criterion. In the present analysis, the amount of energy
dissipated by the system is considered. There are two reasons for thfs: (1)
the analysis of probability distribution and first passage probabilities for
this quantity is slightly more difficult than the equivalent analysis for the

other quantities; and (2) this might serve as a damage criterion for an

actual system.

- The equation governing motion of a base-excited, elasto-plastic, SODF
E system is

y + 2cmn y + mg R(y) = -x : (21)

i g

where y is the relative displacement of the system mass, x is the base accel-
eration, w, is the small displacement natural frequency of the system, g is
the system viscous danpinq factor, kR{y) is the elasto-plastic spring restor-

ing force function, k is the system small displacement stiffness, and dots

DA . <D Buiacs

denote differentiation with respect Lo time. Aan example >f 3 -~=23iizaton >f
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:f R(y) is shown in Figure 8. when the response displacement is small, K(y) is Q;;
?' linear; put when y exceeds tnhe yield displacement U, the restoring force éil
i$ becomes constant, kD. This continues until the sign of the velocity ;&;
i changes. Then response starts to take place along a new straight line in the Ezi
- force-displacement space. This continue§ until yielding occurs again, etc. A
As stated earlier, the response of a linear SUF system to broad-band iij

random excitation is a narrow-nand random process. This means tnat wnen ;
the input has power over a range of frequencies wider than the bandwidth of é’i
the SDF system and including its natural frequency, the system response dis- E?é
plays power content mainly in the band of frequencies nearly surrounding {;5
: wn. The realizations of the response stochastic process resemble a sinu- {::

soidal signal with randomly varying amplitude. That is, the responsd dis-
plays regularly occurring peaks and troughs spaced at a time interval of
about v/ un. This behavior also occurs in elasto-plastic systems when
yielding is not too great. In fact, a half-cycle ‘of response might be .};:
described by the curve shown in Figqure 9.
The starting amplitude of the response is aj.1 and the final amplitude E::
is aj. Assume that a half-cycle in the response of an elasto-plastic sys-
tem is characterized by the curve shown in Figure 9 and that this curve can de

approximated by

-

y(t) = %-(aj_1 + aj) -‘% (aj - ;1) cos w, b, 0<t < nlu, (32)  ,

F; If the dashed 1ine in Figure 9 represents the level at which yielding occurs ;:;
in the response, then a portion of the response during the half-cycle occurs %?1

« £ . v,
. . s

in the yield range. o

P PP

w 7 s

e,

The response can also be depicted in the elasto-plastic soring restorina

X force versus displacement space. When it is, the system oxecutes the curve

shown ‘n Figure 0.

..............
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Figure 9. Half-cycle of narrow-band response in the
space of displacement versus time.
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Energy is dissipated in two ways during the response half-cycle. It is
dissipated in the elasto-plastic spring and in the damper. The enerqy dissi-
pated in the spring during a half-cycle equals the net area under the force
displacement curve. This area depends on the starting and ending amplitudes,
and the SOF system parameters. The energy dissipated in the spring can be

expressed

-;- (ag - ag_l) 3; <0

Epg * (33)

;-(D2 - a?_l) + k[)(a‘j - D) a, > »d
This quantity clearly depends on the starting and ending amplitudes and on
the system parameters. The dissipated energy can be negative, but only when
the amplitude decreases.

The energy dissipated by the damper during a half-cycle of response can

be expressed

y(v/w,)
Eny = cd/. y dy (38)
0d y(0)

The response velocity can be obtained by differentiating y(t) in Equation

32, and the variable of integration can be changed in Equation 163 to obtain

'/“'n
o2
EDd = c/; (y)© dt

= Cunn(aj - aj_1)2/8 (35)

The energy dissipated in the damper is always positive, and depends on the
starting and ending amplitude of the half-cycle response and the system

parameters.

"
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In the analysis of Seétion 11.2.c the half-cycle transition probabili- _?
ties were obtained for a linear system. In Section I[I.3.a, a method for i;.‘._i
normalizing the transition probabilities to approximately account for all the L*{"C'
response paths was developed. Using the methods established in those sec- :.Ei:d
tions, half-cycle transition probabilities can be obtained for a’nonlinear @
elastic system, based on the analysis of Section II.4.a. These are Ef:
=

pAJlAj-l (akllako) = P(Aj = akllAj°1 = akO) ’ J =1, .0,N" (36) .L

E,

Because of the normalization, the sum of ijIAj_l(akllako) over all k,
is 1. ':.f:".:}:
According to the discussion given above, when a nonlinear system whose {_:

force-displacement diagram resembles that given in Figure 10 (and wnose damping
value is c¢) executes a half-cycle of response, it dissipates the energy given o
by the sum of Equations 33 ano 35. The energy dissipated is a function of 3] L

and aJ.

[N

Let 4Ej be the random variable denoting the energy dissipated during a

[
i

half-cycle of elasto-plastic, SOF system response. Then

. P R
LIS AL AT DAY

. . st et T

. S W
PRSP N LS AR

My = By + Epg (37) R
Since the energy dissipated in the spring and damper depends on the ampli- r
tudes 3j.1 and 3§, and since the amplitudes of' the response are random, L—"
AEj is also random.  The probability that the realized value of aEj dur-
ing a half-cycle of response falls within a given interval is depéndent upon ;liI:iE
the joint distribution of A;.) and Aj, the random amplitudes at either %T“
end of the half-cycle. To compute the probability distribution of energy E:
dissipated as a function of time, proceed in the following manner. First, ';:_

compute the probability distribution of eneray dissinated during 2ach half-
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cycle of response. Then use this information to compute the probability dis-
tribution of energy dissipated from the start of the response through the jth
half-cycle of response.

Define a stochastic process Ej, J = 0,...,N' as the cumulative energy
dissipated stochastic process. It measures the energy ddssipéted by a base
excited, elasto-plastic, SOF system at half cycles indexed zero through N',
The cumulative amount of energy dissipated through half cycle j depends on
the amount of energy dissipated at half cycle j-1 and the increment of energy
dissipated during the half-cycle. This latter quantity is governed by the
distribution of AEj, J=1,...,N".

To compute the distribution of AEj, assume that during each half-cycle
of response the amplitude changes sign. This follows from the assumption of
narrow bandedness of the response. This means that in the analysis only the

possibility that the response will proceed from a trough to a peak, or from a

peak to a trough, is permitted. In Figure 9,'aJ._1 and aj will always have

opposite signs., The discrete amplitudes defining possible values of the

response are denoted ag, k = 1,...,M. All the a are positive numbers, E:if
and when the system goes through a trough it simply assumes an amplitude _;
whose value is the negative of one of the ay values. The first M of the Eéﬁ;
values a, k = 1,...,M where M, < M, denote the response values the system ;};;
can assume where yielding does not occur. (Kecall that, for accuracy, ay E?T?

must be chosen large enough so that the possibility that the response assumes igii
that value s small.) When apax is the largest amplitude to be represented
in the probabilistic response analysis, the discrete amplitudes can be

defined as

= 1 = )
ak (k - -z) aa , k 1,...,M (37)

where

s 6 ,'"v LY
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sa = a . /M (37a)

Using Equations 33 and 35, compute the maximum and minimum values the
dissipated energy can assume during a half-cycle of response. These are

denoted enax and enj, and are given by
k [n2 2 2
€nax = 7 (D - (-aMl) )+ kD (aM - D) + Cu, :(aM - (-aml)) /8 (38a)

€nin = s':r (ai - (-al)z) + cw, w(ay - (-al))2/8 (38b)

min
where the response at half-cycle j-1 is required to begin in the elastic
range and can end, at half-cycle j, as high as am.

The range of values the dissipated energy may assume can now be discre-

tized. The discretization increment is defined *

max min (39a)

.

The discrete values that dissipated energy may assume can be defined

e, = (k -.}) se+e. K= 1,... M (39b)

The ey are uniformly distributed in the interval (egin, emax)- N

During any actual half-cycle of response, the energy dissipated assumes :
one value in a continuous range of values., Using the present computation
scheme the rénge of values is (emin» ©max)- Assume that when the energy
dissipated during a half-cycle of response falls in the interval (ey -
se/2, e + ae/2), it can be accurately represented by ey. The accuracy

of this assumption is good when M' is large enough.

Now recall that the amplitude transition probabilities (Equation 35) were R

obtained using the same type of discretization described above. The discrate

amolitudes are a, x = I,...,M and the amplitude increment is sa. When the

y 57
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response falls in the interval (ay - aa/2, a3, + aa/2), assume that the
response is ax. For each pair of amplitudes 3y kg = 1,...,M; at half-
cycle j-1, and L) ky = 1,...,M at half-cycle j, compute the range of pos-
sible energies dissipated during the half-cycle; the starting amplitude is
ako; the ending amplitude is in the range (akl - Ad/2, akl + Aa/2). The

range of energy dissipated values is computed using Equations 86 and 88 and

min max

Kok " ekokl) where

can be denoted (e

-; ((ak1 - Aa/2)2 - aE ) + caup :(akl - 43/2 - a )2/8 » 3 £0D.

min 9 0 1~
k1 V(2 2 2

> (D -3 ) + kD(ak - a3/2 - D) + co, w(ak - Aa/2 - a, ),/8 .

0 1 1 0
3, >D  (40a)
1

-5 ((akl + Aa/Z)2 - aio) * cup n(akl + Aaf2 - ako)z/s . akl‘i D
max
kok1 )k (2 .2 2

i (D - ako) + kD(ak1 + pa/2 - D) *+ cu, w(akl + aa/2 - ako) /8 ,

> D (40b)
"1

The range of values (e"'m . gMax )} will not, in general, equal any one of the
koky® “kok)

ranges (e, - 4e/2, e, + Ae/2), k =1,...M'. The oprobability p
k k . Aj AJ_1
(akolakl), of Equation 89, can be associated with the chance that the
response will start at an -amplitude -ako (taken from one of the values
-3, k =1,...,M;) and end at an amplitude akl, with energy dissipated fall-

min max )

ing in the interval (ekokx' ekokl

Based on the above argquments, the joint, conditional pmf of amplitude and

anergy dissipation increment can be jeveloped. let

.........................................
................................................
.......

.........................
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p (e > a |- ) . ki = 1,...,M
AEjAj'Aj_l k, kl' ko 1

denote the conditional joint pmf of AEj and Aj, given Aj-l- That is

p (e s 3, (-2 ) = P(AE e ,A. =23 [A. ;= -2 ),

40 [ay_ 1 %, k1, ko 37 %, 05T [N T T

ko= 1,...,M
gocay 1

ky = 1,...,M

ky = 1,...,M'

J=1,...,N (41)

The values of the pmf are obtained in the framework of a digita) program com-

putation scheme as follows. (1) A1l the values of the pmf, PAE.A IA
§Titi-1

(ekz, akll-ako), are set to zero. (2) Set kg =1 and k; = 1. (3) Compute

min max y _ (Min _max
(ekokx' ekokl) (ey; , 1) and ij,Aj-l

Equations 40 and 36. (4a) When the interval (eTI", efo) is completely

(akll-ako) = ijIAS-l(all-al) using

included in one of the intervals (el - 4e/2, e, + ae/2), then increment the

(ai]a1). (4b) uhen the

pmf p (e,, a;]-a;) by the amount P
o€ AsfA; 1 e | A A

Jrj-1
min _max . .
interval (ej; , e1] ) overlaps two or more enerqy increment intervals, say

(ell - 8e/2, e, + ae/2) through (el2 - ae/2, e22 + Ae/2), then the probabil-

2
ity, pA-lA' 1(a1|-a1) is divided into fractional parts where the fractions
JHiJ-

are linearly proportional to the fractions.of the intervals, (e£1 - ae/2,

e + ae/2) through (e

(eT}". qux)_ These fractions of p (a l-a ) are used to increment
A Ay kil Tk

L, " Ae/2, e,‘2 + ae/2), spanned by the interval

the values , - - .
u pAEJAJIAJ_l(ell ékll ako) through panAlej_l(elz’ %, | ako)

59




AF

P
2

.-

| _J N

S

- l'-
BV

(5) ky is incremented by 1, and then return to step (3) until k; = My. (6) kg

LT
st

N LASBOSMAL - o

is incremented by 1 and tnen return to step (3) until kg = M.

Assume that the starting probability distributidn of response amblitudes
at half-cycle zero is available. Half this distribution is denoted pp (ay),
k = 1,...,M. Only half the distribution is represented since a, > 0, k =

l,...,M. The starting pmf, and all other pmf's, will be assumed symmetric

3

.
-
r.
| .
3
b.
-
b

about the zero amplitude, in what follows. In most cases this pmf will be

zero for k > M;, and generally

0.5 , k=1 ‘
p, (a,) = (42)
Ak Jo k1

This is the zero start initial condition. Two options are available for
definition of the starting pmf, and the formula given above represents one
option. Half the probability caﬁ be accounted for, as it is in Equation
42. In this case, the marginal pmf's and joint pmf, to be computed later in
this analysis, represent the chance that spec.ific anplitude and energy
dissipated combinations will be realized during a given half cycle. Only the $
probabilities for amplitude combinations that are negative at the start of
the half cycle and positive at the end will be computed. Because of symme-
try, the probabilities of amplitude combinations which have positive ampli-
tudes at the beginning of the half cycle and negative amplitudes at the end
can be found from those computed. Since the energy dissipated during a
response half cycle depends only on the amplitude change, AEJ‘ remains
unchanged when the signs on the starting and ending amplitudes are both

changed. (See Equations 33 and 35.) The second option for definition of the

starting pmf accounts for all the probability by changing the value, 0.5 to
1.0 in Equation 42. In this case Ag must be replaced by its absolute value,

}Ag , because of symmetry. Then, in later computations the marginal pmf's

..................
........
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and joint pmf's ihvolving 'AJI are computed. As in the previous case,

- AEj is not affected.

The joint pmf of AE,, the increment of dissipated energy during the first !j.jf_j

: half-cycle, and Ay and A;, the amplitudes at the beginning and end of the

_. first half-cycle can be obtained using Equations 41 and 42.° m

| Ko
p (e -4 a ) =p (e , 4, |-2a )p -a .
N S S T L R I T A P :

E kq = 1,...,M

1
k; = 1,...,M

kZ = 1,...,M (43)

Take pAo(-ako) = pAa(ako)’ kg = 1,...,M, because of the symmetry assumption.

Only half the complete joint pmf is represented here, but because of the

. ’ symmetry assumption the joint pmf evaluated at negative values, “2,» is
the mirror image of that evaluated in Equation 43. Specifically, '

7

n k e 1,..-,"1

p (e y &y , =2 )3 P (e y =3y, , 2 )) ky = 1’-0-9M
AEleAl kZ ko kl AEleAl kz kO kl 1
ky = 1,...,M

(43a)

et PR IR I
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! PLEFLI
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The marginal pmf's of AE, and A; can be obtained by summing out depen-

_dence on kg and k), then kg and k;, respectively.

M

g L =
.': *p (e ) = (e » &, , € ) » k, = 1,- ’M' (44) I.‘4
- 7T k) h tERMR TR TRy 2 -
S
= ]
ol
- " }w_v_: >
- Pa (ak ) = PAE, AA (ek » € s 8 ) » k= lM (45) 4
o AN U e B e B T L R I M 2
.". -'j
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When Equation 45 is summed over k,, the result is the value one-half. The
reason is that half a symmetric pmf is represented. When Equation 44 is
summed over k,, the result is one-half. The reason is that, even though all
the energy states are represented (see Equations 39a and b), only half the
paths leading through these energy states ﬁre considered. This fact is

accounted for by the factor of 1/2 on the left-hand side of Equation 44.

In the computation framework established here it is not feasible to allow
the system to execute responses where yielding increases without limit.
While the transition probabilities established in Equation 41 can account for
this, the computer storage reguired to account for all the paths would be
prohibitive. Therefore, a response collapsing procedure is established

here., This procedure concentrates the probability associated with all those

m
amplitudes 3, k > My, into pgl)(aMl). That is,

& RS
onlag). o |
kg, 1% K0 1 R
o{™ (a,) = (46) -

The (m) superscript refers to the fact that the omf of A; has been modified.

At this point the modification destroys the accuracy of the true ampii- §,
tude pmf at half-cycle 1. Indeed.'this change affects all future amplitude }i_:
probability computations. However, the modification does not affect the i;;‘:

' Ev-——v‘

accuracy of the increment in energy dissipated probability computations. The

reason is this. Once a curve governing response in the SOF system spring-

force-versus-aisplacement diagram has oeen identified, the only quantity
which affects the energy dissipated during a half-cycle (besides the input

and system parameters) is the starting amplitude on that curve. For examole,
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consider Figure 11. If, at the end of a particular half-cycle of response,
the system has reached the yield threshold, but has not yielded, then durina
the next nalf-cycle the response will be governed by curve No. 1. If, on the
other hand, yielding occurs at the end of a half-cycle, then the next half-
cycle may be governed by curve No. 2. If the system which yielded is excited
by the same input as the system wnhich did not yield, then the change in dis-
placement will be the same in both systems, and both systems will dissipate the

same amount of energy during their response half-cycles. This is shown in in

the figure. The conclusion is that, when a system has yielded during a partic- ;ifi
ular half-cycle of response, it is accurate, as far as energy dissipation E;ii
calculations are concerned, to treat that system as though it started its next §;I¥
half-cycle of response from the yield displacement. This is precisely what the Eﬁ?‘

modification of Equation 46 does.

Now using Equations 41 and 46 the joint pmf of 4E,, A, and A, can be

computed.
S

ko = 1,.. ,Ml :j‘::.

P AE A A (ek ' 3 ako)s PaE IA (ek » A Iak )p&m) ('ak ), k1 = 1,...,M E:j
2PMVR" Ry 2R 1A\ TR TRyl TR/ A 0
kg = 1oeoouM T

(47) =

This can be used to obtain the marginal pmf's of AE; and A;. Then the mar- =
ginal pmf of Az can be modified as in Equation 46, Then the joint pmf of ii;

aE3, A and A3 can de obtained, and so on, until all the pmf's pAE_(ek), ?
J=1l,....,N, k=1,.,.,M are known.

Finally, the specification for the stochastic process Ej, J = 0,...,N",

can be formed using the pmf's’ PaE (ek), = l,0 0N, k=1, .M E. is
. . j J

the enerqy dissipated by the system throuan half-:wcie J. £, [ = O,...,8",
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Figure 11. Force displacement response of elasto-plastic
SDF systems.
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b
is a Markov process. The energy dissipated by the system through nalf-cycle j &;
depends only on the energqy dissipated through half-cycle j-1 and the energy E-'
dissipated increment in the half-cycle between j-1 and j. __S

Let p (e g )s 3 = LoeessN's ko, Ky = 1,...M", be the conditional Y
T L
J1H-1 53
pmf for the random process, Ej, j =0,...N', defining transition probabili- E .
“ties between states of dissipated energy. Let ;f:ﬁ
M= N x M (48) o
and P

e = (k - 1) Ae k =1 M (49)

k '2' s 9oy

where ae is defined in Equation 39a. e
e
Then the transition probabilities are defined -
i= 1N (50) L
p (e e)=p (e - € ), L
E5lE g Bl o) ™ Pags By 7 S kgoky = Lyouo Mt 3
That is, the chance that the dissipated energy state changes from eko to e:k1 -::j
in one half-cycle equals the chance that ekl - eko units of energy are dissi- ;j.':
pated during the jth half-cycle. L
Let Pe (ek), J = 0,004, k=1,,..,M" Dbe the pmf of enerqy dissipated *-
J Y
through the jth half-cycle. Then the joint pmf of energy dissipated throuagh ,
the j-1st and jth half-cycles is obtained following Equation 34a; it is - =
: J o= 1,000 ,NY,
p (c y € )=D (e € )D (e ), (51) 2
RIS R A LIRS R kgoky = Toooo M -
The marginal pmf of energy dissipated through the jth half-cycle is li::
M §or 1. ,N o
p (E ) = Z p (C sy € ) s . (52) t:
EJ- kl k0=1 Ej‘IEJ ko kl kl = 1".." " :_:.
.::j
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Or by combining the operations in Equations 51 and 52, the marginal pmf of Ej
from the pmf of Ej_1 can be obtained

‘M:: §F=1,... N
o) e ) )
Es\ky kp=1 E5|E5.q ky[%kg E;s1\kg Ky = Loooo Mo

By specifying the starting pmf of Ey; one can obtain the pmf of Ej for
any j = 1,...,N', through successive applications of Equation 53.

Note that no assumptions regarding the stationarity of the input'signa1s
has been made in the analysis of this section; therefore, the probabi1}ty
distribution of the enerqy dissipated response excited by a nonstationary
input can be computed using the technique developed above. Further, energy
dissipation caused by inelasticity in the spring and viscous damping need not
be considered simultaneously. No feature in the theoretical development of
this section precludes the consideration of energy dissipation due to one
source only.

When the pmf, Pe (ekl), 1s summed over all k; the result will always be a
J

value of 1. The reason is that all potential values the adissipated energy
might assume have been approximately accounted for. The definition of epay
and @ nin in Equations 38a and 38b, and use of these in Equation 39a and 39b,
the definition of the dissipated energy states, has guaranteed this.

The accuracy of computations performed using the approach Epecified above
will improve as the values of M, M, M' and ay are increased. The first

three values involve the fineness of the discretization; the last value is

related to the displacement interval where response paths are accounted for.

b. Numerical example--This section gives a numerical example demonstrating

use of a computer program which impiements the analyses presented in Section
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I1.5.a. In this example the probability distribution of energy dissipated
up to a particular time is computed as a function of time. Specifically, the
pmf , pEi(ek)’ J=0,...,N, k =1,...M  is computed at the half-cycle points
of an §DF system response. The input used to excite the system is a band-
limited white noise. The system computation and input parameters are listed

in Table 4.

TABLE 4. SYSTEM, COMPUTATION, AND INPUT PARAMETERS FOR e
ENERGY DISSIPATED pmf CALCULATION : R
st = w/(Su,) w, = 6.28 S
ay = 1.0 l
z = 0.05 k = 39.5 D = 10.0 .
M =18 =]
Vo K
M = 20 L
M = 1000 e
ay = 15.0 s
N' = 50 S
]

The response pmf was computed at a time interval of ten half-cycles. The

resulting pmf's were interpolated so that the results could be displayed as a

sequence of pdf's., The results are shown in Figure 12. Each pdf is plotted Ejﬁ
in a vertical plane of pdf ordinate versus energy dissipated. :}if
At time zero the system starts with no energy dissipated, so the first '}51

pdf is a delta function. As time progresses, the chances for increased Sizi
amounts of dissipated energy increase, and the pdf's of E; spread. The S;ZE
pdf's shown in Figure 12 resemble exponential pdf's, and simple computations ;ﬁi
-

show that the results are nearly exponentially distributed.
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The mean and variance of each pdf were evaluated by the computer pro-
gram. The graph of the mean value of enerqy dissipated versus time is plot-
ted in the horizontal plane of Figure 12. This curve increases with time and
appears to be in a condition of constant (straight line) increase past half-
cycle 30.

A listing of the computer program used to perform this numerical example

is given in the Appendix.

6. FIRST PASSAGE OF DISSIPATED ENERGY IN AN ELASTO-PLASTIC SYSTEM

a. Theoretical analysis--The analysis of Section [l.5.a pointed out

that the sum of the marginal pmf of dissipated energy, pE_(ek), J = 0;...,N',
k = 1,...,M", over all k equals 1, because all the va]uethhat dissipated
energy can assume were accounted for. Also pointed out was that the sto-
chastic process tracking dissipated energy is Markov. The first passaqe
problem for energy diﬁsipated in an elasto-plastic system can be solvgd by
taking advantages of the Markov property and rearranging the computation
scheme to permit the escape of some response paths past a barrier.

Since the stochastic process tracking dissipated enerqgy is Markov, its

transition probabilities can be arranged in a transition matrix defined as

follows.

’ (e1]ep) ( ) ( ) )
pEJ‘*1|EJ 114 pEj+1'Ej 2l "Ej+1|5j e |1
pEJ+1|EJ(e1|€2) pEJ'+1lEJ'(€2|52). T Peg|eewled)

(Pynrd = : | :

- EJ*llEJ ‘o] Ej+1|Ej(82|€M ) pEj+1|Ej(gM [em )J

g % Jyeaeydtel 54,
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Each of the elements in the matrix is defined as in Equation 50.

the pmf

Through
denoted

This is

of dissipated energy is arranged in vector form,

.} = {pe (1) Pe (£,) ooe pp ()T s
j ( Fh e P E;'CM )

J=0,...,N'

And when

(55)

specification of the pmf of dissipated energy at half-cycle zero,

{po}s one can obtain the pmf of dissipated emergy at half-cycle j.

J
oy} = 7T, P ool

(Details of this general procedure are given in Section 11.2.d.)

(56)

The computation procedure outlined above can be modified to yield first

passage probabilities. Let [P;+1] denote a square submatrix of [Pj+1] t aken

from the

[Piey] =

upper left corner. Then

-

0 ALY L UL AL T

psj+1|5j<‘1|€2) ”Ej+1|£j(‘z|‘2)

L-psj+1|sj(€1|eL’ Pe e (caled)

-
PE g [ oIS

G IALE

Pe,, g el

J

J o= 0, N -1

(57)

*
where L < M*. And let {po} denote a vector of elements to be operated on by

* *
the [Pj}. The elements in {pg} are the probabilities that Ey occupies the

states e; through ef.

1. ¥
Pat = (o (es) P

.
(e) +== 0g (e))
2 £y oL

- - Ay -
ARANLA A A




The star (*) superscript is attached as an indicator that the transition and
state probabilities corresponding to the entire range of realizations are not

* * *
included in [Pj+1] and {pg}. A vector {pj} can be obtained through succes-

. . * *
sive operations of [Pk] on {po}. This is

(b3} = T [P {ogh v 4= Lo (59)

J=1
*

The elements of {pj} represent the probabilities that particular states in

the energy dissipated range, €; through ¢, will be reached following paths

that do not pass outside the level ¢ . Therefore, at half-cycle j, the no

passage probability of dissipated energy is
L *
P(Ty > iv/uy) = lz:l pEj(ek) S R SN 1 (60)

T, 1is the random variable denoting the time at which first passage of the
dissipated energy response passes outside the level e . #/up is the
duration of a half-period of the system under consideration. pE'(ek) is the
kth element in the vector {p:} !

The first passage event is the complement of the no passage event: there-

fore, the first passage probability is given by

P(T; < In/wy) = 1 - P(Ty > /), o= 1,... N (61) b

This first passage probability is a nondecreasing function of j.
As long as the input exciting response in Equation 31 has nonzero mean %5§}
square power, the first passage probability will increase as a function of ;zg
time. This corresponds to a feature in the matrix of Equation 57 where the E;E:
rows ao not aaa to 1; that is, the probapility that the response starts at R
any ooint in the range =, through <, and passes to another point in the same ;E?
=

71 ;cﬂw
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range is lower than 1. The remainder of the probability corresponds to patns
which pass outside the barrier -

The analysis done in this section is restricted by the assumptions used
in obtaining the elements in the transition matrix, Equation 54. Most
important, the response is assumed narrow band; therefore, the analysis is
accurate only for systems in which large amounts of yielding cannot occur
during most half-cycles. First passage of enerqgy dissipated due to the non-
stationary response of an SOF system can be accounted for, though, since the
probability distribution of energy dissipated in nonstationary response Can

be computed using the underlying approach of Section [1.5.a.

b. Numerical examples--This section summarizes some numerical examples

demonstrating the use of a computer program which implements the analysis of
Section II.6.a. The computer program used here involves only slight modifi-
cations in the computer program of Section Il.6.b; therefore, it is not
listed in the Appendix. The first passage probability functions are computed
for three cases. In each case the input excitation is a band-limited white
noise stochastic process. Three barrier levels are chosen for analysis. The
system, computation and input parameters are listed in Table 5.

The first passage probability was computed at an interval of every ten
half-cycles. The first passage probability results were interpolated so that
they could be displayed as continuous curves. These are shown in Figure 13.
A zero start condition was used on each firét passage computation; that is,
the system was started with zero energy dissipated. For this reason, each
curve starts at zero. As time progresses the chance that the response passes
outside the barrier increases, so the first passage curve increases. As time
goes to infinity these curves approach one since the input is stationary;

axcursion of any finite bdarrier is assured as *time qoes to infinity. As the
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TABLE 5. SYSTEM, COMPUTATION, AND INPUT PARAMETERS FOR FIRST PASSAGE
OF DISSIPATED ENERGY CALCULATION

At = w/(Sun) w, = 6.28
oy * 1.0
z = 0.05 k = 39.5 D = 10.0
M= 18
M=l M = 20
ay = 15.0‘
N' = 50
Case 1 L=5 €g = 1400

Case 2 L =10 €10 * 2800
Case 3 L =15 €15 = 4200

barrier height is increased the first passage probability tends to increase

more slowly with time.

7. PROBABILITY OF FAILURE

a. Theoretical analysis--The reliability of a structure is the probabil-

ity that it will perform satisfactorily over a preestablished period of r
time. The requirement for satisfactory performance implies that some crite- S
rion has been established to judge whether or not the response is accapt- ?ifﬁ
able. Failure of a system to satisfy the resﬁonse criterion is called struc- éi:i
tural failure and the probability of failure is 1 minus the reliability. ii?&l
In many situations failure occurs only with the physical collapse of a struc- ';Ef
S8

ture; and in such cases the reliability is the chance that no collapse will S
—
occur during the design life of a structure. When structural collapse is the 1

failure criterion the reliability is difficult to estimate accurately since 3




structural analysis predicting collapse must be executed in the reliability

analysis. For this reason structural reliability is often simply bounded or
estimated approximately, usina approximate nonlinear structural analyses
where necessary.

There are three features which may lead to raﬁdomness in the dynamic
response of a structure. These are randomness in (1) the input, (2) the
mechanical properties of the structural material, and (3) the geometry of the

system under consideration. When the material properties and geometry of a

structure are practically deterministic, then only the input is random; énd
the relijability analysis can be reduced, in many cases, to a first passage
ii analysis like the one presented 1in Section II.2 or I1.3 or I1.6. The

deterministic failure level of the system is simply chosen as the first pas-

sage barrier, and the failure probability is computed as the first passage

probability.

In a more general situation the mechanical properties of the structural

E A

material are random and no single first passage analysis can be used to

v 3
R

ANARR RN
o » 4

estimate the failure probability. Rather, a combination of information

>

regarding the probabilistic character of the material must be used with
informat fon on the probabilistic character of the peak response to estimate
the chance of failure. Specifically, through testing, the conditional proba-
bility of failure of a material can be developed. The probability of failure
is conditional on some measure of the 1déd pn the material, For example,

when a test specimen is loaded monotonically the probability of failure is

conditioned on peak stress or peak strain. When a test specimen is loaded
cyclically the probability of failure may be conditioned on a measure of

accumulated plastic deformation, or energy dissipated, etc. The following

material considers this problem for SDF systems. The response of an elasto-

plastic system is considered, and the system under consideration is assumeq




to have a random capacity for dissipating energy. Through testing, the prob-
ability of failure can be specified, conditional upon the amount of enerqy ¢
dissipated in the system. When the letter F is used to denote the failure
event, the conditional probability of failure is denoted P(FIEC =€), € >
0. E. denotes the total energy dissipated over the entire duration of the
system response, and the assumption is made that the conditional probability
of failure is known for all realization of dissipated energy, €. When the
probability distribution of Ec is specified, then this can be used with
P(FIEc = ¢) to find the probability of failure.

The quantity Ec’ whose probabilistic character needs to be specified, is
the peak value of energy dissipated over the entire response duration. The
cdf of this quantity can be found in terms of the first passage probability
for dissipated energy obtained in Section II.6. The following material
slightly changes the notation established in Equations 60 and 61. Let Te
denote the random variable representing the time at which first passage of
the dissipated energy barrier level € occurs. If T. is the duration of the
response, then P(T. < T.) is the probability that first passage beyond
the barrier € occurs at or before T., and can be found from Equation 61.

But this probability can be viewed in another way. It is the chance that

the peak value of energy dissipated in the time interval (0, T.) surpasses R

DY AL AR

e ,.
T
el e
IS WP

the value €. That is

P(E. > €) = P(T_< T ' (62)
The complement of the event whose probability is described on the left-hand
side is that the energy dissipated is less than or equal to e; therefore,

P(E. <€) =1-P(T_<T,) o (s3)

The function on the left can be computed through repeated application of the




LT AN ML NAAAREL CALS A

first passage analysis. That is, a f*rst passage analysis can be run through
time 1;, for various values of the barrier level, e¢; in this way P(E. < €)
is evaluated at a discrete set of values. |

The pdf of E. can be obtained by differentiating the cdf of E., Equa-

tion 63, with respect to . The result is

fEc(e) =P <o), e>0 (64)

The product, fE (e) de, denotes the probability that Ec has a realiza-

c .
tion in the interval (e, e + de]; therefore, the joint probability that sys-
tem failure occurs and the dissipated energy lies in the interval (e, € + de

is given by
P(F, € <E_ < e+ de) = P(F|E_ = ¢) f (e) de , >0 (65)
g >

The probability of failure can be obtained by integrating out dependence on ¢

in the above exprassion. The result is

P(F) ’-/o P(FIE, = ¢) fe (e) de (66)

The above expression can be discretized so that the discrete nature of the
cdf of E. can be directly accounted for.

The computations performed above assume that the SDF system will fail due
to the dissipation of energy in the system. In fact, failure may be more
strongly related to another measure of structural response or a collection of
other measures. If the conditional probability of failure given these other
measures of response can be specified, either based on experiments or theore-
tical considerations, and if the probabilistic character of these other mea-
sures of structural response can‘be obtained, based on the type of analysis
given in this report, then the probability of failure can be specified using

the same general approach daveloped in this section. [n view of this, the

77
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failure analysis presented in this section is simply meant to demonstrate a
technique which takes into account the randomness in the excitation and the

system characteristics.

b. Numerical example--This section presents a numerical example demon-

strating the use of a computer program which implements the failure analysis
of Section Il.7.a. The computer program uses the first passage analysis of
Section II1.6.b to develop the peak response cdf; therefore, the input used
in that section is in effect here. That is, a white noise is used to excite
the system. The time duration of the input and response are taken to be 50
half-cycles of the response. The cdf and pdf of E. are evaluated at that
time, The system, computation, and input parameter used to obtain the cdf of

Ec are given in Table 6.

TABLE €. SYSTEM, COMPUTATION, AND INPUT PARAMETERS
FOR PROBABILITY OF FAILURE CALCULATION

At = n/(Smn)

.............

oy = 1.0
¢ = 0.05 k = 39.5 0 = 10.0
= 18 Ml = 12 M' =2 20
ay = 15.0
N' = 50
cdf of Ec evaluated at
€y * 840 AE = 280
eg = 1120
€ * 1400
€ * 1680
e; * 1960
78
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Part of the cdf of E. was computed at increments graphed in Figure 14.
The cdf was computed at increments of dissipated energy equal to 280. The

cdf is shown as a step function. The pdf is estimated by differencing the

-
|
»
»
-
v
\
‘.
\
L

cdf. The increments obtained by differencing the cdf are shown in Figure 15.

In order to compute the failure probability, the conditional probability
of failure given the level of dissipated energy must be known. In this exam-
ple it is assumed that the conditional probability of failure is that shown

in the graph of Figure 16. The dissipated eneray increments upon which the

LR 2 IR

failure probability is conditioned were chosen to correspond to those used in
obtaining the cdf of E.. This was done for convenience, though any discre-
tization in the conditional failure probability function could be interpo-
Tated to make it compatible with the increments in the cdf of Ec.

The discretized form of Equation 66 used to obtain the failure probabil-

ity is

AT e Yy e e

. M.
P(F)=1éP(F|E=1(5+e+))[P(E Cepgq) - PE < e )]  (67)
] ¢ 7 % " “k+l ¢ = Sk+l c %k

where AE is the dissipated energy increment ¢, k = 1,...,My are the dissi-

. memr o

pated energy levels where the cdf of E. is computed, and M, is the number
of dissipated energy values where the computation is carried out. In the

present example, the probability of failure assumes the value

P(F) = 0.0(0.6057) + 0.2(0.1979) + 0.5(0.1031) + 0.8(0.0532) + 1.0(0.0401) ‘
= 0.1750 (68)

This example shows that it is necessary to obtain the cdf of E. over
these values only where the conditional probability of failure is greater
than zero ang less than 1. None of the energy dissipated quantities can lead
to failure when the conditional probability of failure is zero. and all tne

2nerqgy dissipatea quantities lead to failure wnen the conditional probaoility

of failure is 1.

...................................................................
.................................................
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Figure 15. Approximate partial pdf of energy dissi-
pated during 50 half cycles of response
of an elasto-plastic SDF system.
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Figure 16. Conditional probability of failure of an
elasto-plastic SDF system given dissipated
enerqy.
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In summary, this section has shown an approach to the prediction of reli-

ability of SUF systems that are nonlinear and subjected to both stationary and
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nonstationary loads. Various measures of response have been considered and the
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failure probapility has been computed for a system with a random failure level

w
v b
Ly

o<
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III. FAILURE ANALYSIS OF MULTIPLE-DEGREE-OF-FREEDOM SYSTEMS

1.  INTRODUCTION

In the previous section, a probabilistic analysis of single-degree-of-
freedom (SUF) systems was presented. The extension of the problem to
multiple-degree-of-freedom (MDF) systems is not trivial. Recall that one of

the disadvantages of the previously presented SUOF approach was the storage

requirements for the state probabilities and the transition probabilities.

Even when some memory requirements were reduced by additional computational
effort, tne memory storage was large. Any solution for MDF systems should

include consigerations for a reasonably large number of degrees of freedom (at

o least several hundred). This constraint has led to an alternate procedure for
predicting the probability of survival of structures excited by highly tran-
sient loads, such as blast and shock.

The survival probability of a structural system subjected to blast and
shock loads'can be computed using the basic elements described in the opening
- section of this report. Tne random character of the structural system and of
the loadings must be known. A mathematical procedure must be developed that
models the system so that the random response is predicted. The failure level
must be characterized and, finally, intersection of response and failure must
be integrated into a probability of failure or its complement, the probability
of survival. This section presents an approach using these elements for
inelastic systems that are represented by MOF solutions that have some chance

° of failing at any of a number of locations.

2 2. THEURETICAL ANALYSIS

- a. Failure at a single point--The survivable probability of a blast- i;i.
A excited structure can be computed by a four-step procedure: (1) A numerical'

- scneme for computing the response at various locations on an inelastic RS
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structure is selected. (2) The parameters of the input and the structure are
characterized probabilistically. (3) Peak responses are expanded in a series
involving the input and system parameters, and the mean and variance of the
peak response at each location are determined. (4) Margins of survival are
established and used to compute the probability of survival, Each of these
steps will now be described in detail.

The equation governing the response of an MDF structure can be written
m] {z} +{R(2)} = {F(t)} (69)

where [m] is the mass matrix, {z} is the displacement vector, dots indicate
differentiation with respect to time, {R(z)} is the restoring force vector,
ang { F(t)} is the forcing vector. When the system characteristics are random,
the parameters governing the behavior of {R(z)} are random variables. when
the input is a random process, the parameters of the forcing vector are random

variables.

Let Bj, J=1, ¢+, m, denote the random structural parameters. Let Bj’
J=m+l, *++, n, denote the random input parameters, then the response at a
point, i, on the structure is a random process and can be expressed

zi = zi (t, Brs *°*°, Bn). A number of techniques can be used to compute this
response when the Bj, j=1, **+, n, are specified. In reality most dynamic
problems do not explicitly solve the system of equations shown in Equation 69,
but rathe; the system is spatially discretized in some way and the equations
of motion are solved on a cell-by-cell basis in a sweep through the system for
a small time step. Simplified approaches can be used as well as complex

finite element solutions.
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The maximum response in time at the 1t point is

Zi(Bp **% Bl‘l) = mgx zj(tu Bys o2 Bn) (70)

Note that although Zi and z; represent displacement here, they could represent
any measure of the response and its maximum. iet Hj and qf represent the mean
and variance of the random variable Bj, j=1, ¢++, n, and let °jk be the corre-
lation coefficient for sj and By The function Z can be expanded in a Taylor

series about the means of the parameters.

n 3z,

+ (By = ug) + oo (71)
{u} ;;i 385 I {u} 317

where {u} is the vector of mean values of the Bj’ j=1, eee, n.

Zi-Z.i

The mean and variance of the peak response can be computed approximately

as

n n 311 aZ_i
V[Zi] 2 Z E — — pjk °j N (72b)

ja1 k=1 %85 | {u} %8k |{u}

These expressions are approximate because higher order terms in the series
expansion have been neglected. These terms can be retained when necessary.
Several appropriate evaluations of the importance of the higher order terms
.can be considered. If higher order terms do not significantly change the
solutions, they need not be retained. Also if the peak response function can
be easily differentiated, either analytically or numerically, the slope,
curvature or higher order differentials can be evaluated on either sidé of the

mean to detect changes. If the changes are zero or small, no further terms

should be necessary. An 2quivalent approach is to examine the order of the




peak response function in a reasonable range of the mean determined by the
failure level.

Structural failure is assumed to occur when tne peak response at any
single point exceeds the failure level. Let Li be the random variable denot-
ing tne failure level at a point i. Let E[Li] and V[Li] be the mean and vari-
ance of L.. Assume that Zi and L, are independent. A margin of survival at

point i, Mi’ can then be established as

This margin has mean

E(mi] = E(L4] - E[Z4] (74)

ang variance

V[MiJ = V[Li] + V[Zi] (75)

-’

Failure occurs when the margin of survival is negative and, therefore, the

probability of survival is
Pg = P(Mj > 0) (78)

Tnis can usually be evaluated using E[Mij and V[MiJ when the distribution
of M, is specified. When Zi and Li are either normally or lognormally dis-

trioutea, P_ can easily be determined.

S
A development analogous to the above can be executed when Z is any mea-

sure of tne s:.ructural response.

The following numerical example considers the case where tne potential

for failure exists at only one point on a structure.
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b. umerical example--A laterally supported vertical cylinder composed - .k

’
Pyt d

of two materials can be simply modeled as a set of axial springs. The two

Cave
ke '« '
P

materials are modeled as springs in parallel, while the structure length is

modeled as springs in series. An example structure and model are shown in

AR N

Figure 17. The materials are assumed elasto-plastic.

Consider the structure excited by a random blast input defined by
P =A<+ de‘at where P is the pressure history. The peak pressure A' = A+B is
a normally distributed random variable with mean 1280 psi (8.8 MPa) and stan-
dard deviation 102 psi (0.7 MPa), 8 = -1.069A, and & is a normally distributed
random variable with mean 0.80 and standard deviation 0.2 t as time.

Tne peak response, taken here as strain, at point C (Fig. 17) nas been
predictea for the mean values of the input using a numerical approximation to
tne solution of Equation 69 (Ref. §3). Additionally the peak responses near

the means provide partial differential quotients to approximate the partial

differentials in Equation 72b. The results obtained are

f
[ A R TS
) t

o)

z,m = 2.12 (10-3);

P

" "

¥
&

32/8A'tu} = 0.429 (10°3);

2 - -3):
32/30 {U} 0.300 (10 ),

and o is assumed 0.1.
an

Using Equations 72a and b, the mean and variance of Z become 2.12 (10-3)

and 9.0 (10-8). Let L be the strain at which failure occurs and define the v

mean of L as 0.00Z and 2.5 (10-7), respectively. From the above development,

.,"",

tne mean anrd variance of M, the margin of survival, become My = 1.2 (10~*) and EL:
K Vo= 3.4 (107), : N s
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Assuming a normal distribution for Z and L gives the probability of sur-

vival as

P = - ¢ = 4 -

where ¢ is the standard normal cumulative distribution function.

In the present application, sufficient accuracy was obtained using the
first two terms in the Taylor series (Equation 71). More complicated situa-
tions may require inclusion of additional terms.

c. Failure at multiple points--Note the possibility of multiple point

failure. That is, the probability of structural failure, given that it could
conceivably fail at any of a number of Jlocations, N. [f the failure level at
one location is independent of failure at other locations, then the solution
is simple. If, however, the failure level at one location is correlated to
failure at other locations, the correlation coefficient for the failure levels

must be giden and the correlation for the margin of survival between locations
must be determined.
The correlation coefficient for the margin of survival at any two loca-

tions, £ and m, can be computed:

Pyt Cov (M, Had (77)
VT V]
Note that Cov[M,, ;] = E[M, M. ] - E[M,] E[M,]
= E0(Zy = Lg)(Zy - Ly)] - E[MyJECM,]
= E[2,2,] + €[ L] - €[Z,L] ~ E(L,Z, ] - ECM,IM ]

.........
...............




....................

NOW

liybpd = oy LT VILT + €0t ] ELL,)

wnere

°£Lm is the specified correlation coefficient between the failure
""levels at locations £ or m

A and
t[Lsz] = t[Zz] tLLm]
e[ 4] = E[L, ] E[Z,] by independence.
jf Combining the above gives:
k 9z aZ
. 2 Zp(u) Zpu) + 5:‘ ipjk 0j Ok — -
31 &= B Hub 85 |{u}

¢ oy " VLT VIL,T + E[L,] ELL,] - E(Z,] ELL]

- €[z_] €L, - (] E[o ] 0 o (78)

which contains only previously determined or specified elements.
Failure occurs wnen tne margin of survival is negative, and the probabil-

ity of failure can therefore oe approximated by

N N
Pe = p('u Mg < o)= TP(M < 0) - TTP(M; <0 Mj < 0)

) j=1 i

N
4 soe tp Z M] < 0 (79)
i=1

where N s the number of failure points considered.
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This series may be approximated by truncating the series of summations

after several terms. The problem then becomes

n
where s is a subset of the set {1, 2,¢++, N}. This expression can be
evaluated by executing the n-fold integral of the nth order normal pdf of Xj,
j=1,..., n. (Assume that the set s contains n components and these are
denoted Xj, j=lye¢, n.)
The nth order normal joint pdf is
pM ? eoe?d M (xli ...’ xn) = 1 .
1 n (2,)0/2 15‘1/2
; 1 n
P»' exp (' -2' i Z(Xi'ui) r‘ij (Xj'“j))
- 1=] j=1
. - @< x5 < w, ial, e, (81)
.. where |S| is the covariance matrix of the Xi, j=1, ¢*<, n, |S| is the
-
- determinant of |S|, F i is the cofactor of the i'" row, jth column element in
’-'.
:ff, |s|.
In terms of Equation 81, the expression 80 is written

0 0
p n M' < 0 = fdm 1] oo fdm D ’ see)d m 4 ...i m
(ies i ) J 1 4 n M, Mn( 1 n)

Q 0
= sece 1
[‘“"v :[""'n (20772 |5(172
exp(-— T X (x4=u5) ryy (xj-uj)) (82)
2 ja1 §=1

.......................
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The integral can be modified through a change of variables

m: -
yi = = 1 y i=l, eee (83)
94
to obtain
-ulldl ’un/an 01, ouo’ °n
PN M; < o) = J/’ dy;, ---./Gy
(ies ! < J." (emn/2 5|12
p oo '
exp(- E- E . %Y Tij cjrj) (84)
i=1 j=1

The integral can be further modified by another change of variables

2y = 4=, =1, eee,n (85)
Y5

This yields

“/rp ./rp .
*®e o

pfn M, < o) . dz, oe- dz L n 1
] b4 n z (A N} 2
(iis _al‘/u1 _an/un (zn)n/Z Isll/z Z1 Zn

n n ag r [e}

exp | - 1 Ty Llu (86)

= 2 i=1 je=1 Z; zj

This quantity can be evaluatec numerically.

.......................................
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In the present investigation, a Simpson's rule scheme is used to numeri-

cally evaluate the integral. Each of the integrals evaluated in Equation 86
is an element in one of the sums on the rignt side of tquation 79.
Thus, using E[Mi], V[Mi], and °sz’ the probability of failure can be

obtained.

d. Numerical example--A nine degree-of-freedom spring mass system that

models a structure responding only axially has been selected to illustrate the

analytica)l procedure (Fig. 18). ' i—;l

F 1 —2.—3__48__5__6__7__8__09
N e I o T e 0 o 3 0 0 o W e o KD Cj

Note: All masses are 1000 kg. : .

Figure 18. Spring mass syvstem.
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The system has elasto-plastic springs. Two of the springs near the
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center (springs 5 and 6) exhibit yfeld at their mean values at Tower levels

v ¢
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tnan do the otners. The forcing function is exerted on the first mass as

shown in Figure 18 and is a decaying exponential of the form F = A + Be.“t.
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Three of the parameters that descrioe the system and two that describe the

applied force were identified as random. The random variable parameters (mean

D,

v
8

AR LI AN
a’a ""-AQ'A'A‘_-' ‘e . g

and variance) and tnhe correlation coefficients between sets of random

B
—t

variables are shown in Table 7.
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The problem was constructed so that at the mean values of the parameters,
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the maximum strain in the system would result in a ductility ratio of about
10.
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Tne partial quotients (that estimate tne partial derivatives of the

o 5.“ 0

response measure with respect to each of the random parameters) were obtained

by a series of deterministic calculations in which the random parameters were
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varied. The deterministic approach was the numerical solution used in the
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TABLE 7. KANUOM PARAMETEKRS

o . -
AL

, e
LR

Kandom Variables Mean variance Correlation Coefficients
C1 CZ A+8 a

Spring constant, . 1.00E10 1.00El8 0.1 0.1 0 0
all springs, K

LA ]

v v
7

- .
EAOR
.

Yield limit, 1.00E08 1.U00El4 0.85 0 0
springs 1-4, 7-9, ( -

Yield limits, 8.50E07 7.23E13 0 0
springs 5, 6, {,

Peak applied force, A+8 1.00e08 1.00El4 0.9

yecay coefficient, a 15 2.25
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Five locations were selected as potential failure points; one near the

loading (spring 2), two at the low-yield springs (springs 5 and 6), and two

near the bottom (springs 8 and 9). The failure level at each point was
considered as random; the means and the variances are shown in Table 8. The

correlation coefficients between the failure levels at the various points were

also estimated and are shown in the table.

TABLE 8. FAILUKE LEVEL MEAN AND VARIANCE

Location Mean Variance Correlation Coefficients
(Spring Number) 5 6 8 9
2 0.06 3.6E-05 6.1 0.1 0.3 0.3
5 0.09 8.1€-05 0.8 0.1 0.1
6 0.09 8.1E-05 0.1 0.1
8 0.06 .  3.6E-05 0.7
Y 0.06 3.6E-05 :

cquations 74 and 75 have been used to estimate the mean and variance of
the margin of survival at each location. Equation 78 estimates the
correlation coefficients between the margins of survival at the various
points. This information has been used as input in an approximation of the
multivariate normal distribution, and a numerical form of Equation 79.has been
usea to compute tne probapility of system failure. The analysis shows a

failure probability of 56.4 percent.
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In summary, this section nhas shown the development of an approach that
predicts the reliability of MUF systems that can fail at any of a number of
locations. The random nature of the structural system and the load have been
addressed. In addition, the failure level has been considered as a random
property. The development is general in that the random parameters are

treated as correlated rather than independent.
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IV. DEVELOPMENT OF A STOCHASTIC FINITE ELEMENT CODE

1. INTRODUCTION

The previous section addressed the use of a deterministic finite element
code to calculate tne mean and to approximate tﬁe variance of selected
response measures for nonlinear problems with random input and material pro-
perties. The approach required repetitive calculations to estimate tne mean
ana the behavior near the mean so that the variance could be estimated. Since
nonlinear, dynamic problems are random processes it would be more useful to
nave an approach tnat tracks the evolution of tne random behavior of response
measures witn time. This section addresses such an approacn. The equations
in a typical numerical approach may be used to compute the variance and covar-
iance of various response parameters; but this section carries the results
only as far as the random description of the response measures. The extension

for probabilistic failure analysis is the same as for the previous section.

2. THEORETICAL DEVELUPMENT

Consiger a one-dimensional nonlinear finite element algoritnm which

proceeds as follows. Tne acceleration at location i and at the jtn time step

is
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where

e, .'1_.1)

., v,

a = acceleration

F = applied force

FI = internal force

m = mass

superscript i is a spatial index

subscript j is a time index

The velocity, V, at location i, time step j, for a At time step is

V; = v' + aTAt
J-1 J

and the displacement, d, becomes

i i
d;-=d] + V't

-l

Using a simple definition of strain based on the original length, &, the

strain ¢ becomes

FLALIP

L I A

J 1
4 .
& and stress, o, is addressed in some nonlinear, inelastic relationship to ‘ﬁfﬂ
_ .
F strain L—-}
) ;tg
- ai a fle., i g i . ?u
|- J j? mu_l’ mb_l’ - el
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j
where € and °mJ._1 are memory parameters (from the last time step) that are

m
j-1

usually required for path dependent models. E and other parameters are the

moduli and strains that are used in the functional form of the nonliner

model.

An example of a nonlinear model (used in subsequent calculations in this
report) is a two-modulus elastic-plastic model that unloads on the elastic

modulus. For strains less than some specified strain ¢;, the material model

is elastic with modulus E, that is

i i
7= Etj
wnen strains lie in the range e¢; < e} < €2, then a second modulus, £2, becomes

effective and

Ll

a‘; = kg, + <%‘; - e{) €2

T T e I O |
A
.l
A

2l Ay

-

and when tne strain exceeds €2 the material is plastic with

i

9

= L) + (e -eq)E2
This particular model can treat unloading differently than loading and thus
dissipate energy. This treatment requires memory parameters. The memory

parameters are the maximum stress and strain attained, so that at unload the

stress can be computed from

ai . g i ; i ei
J max . max . J

~

<
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The last computation for a time step in this finite element process is

the calculation of the internal force FI for the next time step.

vy -

FI} = a}'l - c})A

Ha

where

% Ug

A = cross section area of the element

o =0
Jd

After all elements, i = 1. . .N, and nodes, i = l---N + 1, are updated, the

information generated at j is used to compute the response at j + 1.

ii The fact tnat all the memory required for calculation of the response

fﬁ measures for the current time step lies in the previous time step information
indicates that this may be a Markov Process. A Markov Process is one in which
the properties of a random process can be computed given the state at a pre-
vious time and the time since that state. The random properties of each of
the response measure parameters can be computed from the previous time step
data. For example the first output measure of interest that is computed by

the deterministic algorithm is the velocity
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Assuming that V;_l and FI;_1 are random variables, the properties of

[l
»,
]

"

i
which were computed last time step and that Fj is a random variable, the

properties of which describe the loading function, then

E[v}_l], Var[v}_l], e[F1y_,]s var[F1,,]. E[F}], Var[F;],

and
‘ i
cov [V_1F154]
are known, Then
i i i i At
E Vj = E[vj'l + (Fj - FIJ-I) m
= deterministic calculation with mean values
i i2 192
V"["j] e[vi ] - €[vi]
i, i (i 1\ aty,
e[vi]= e [vi., + (¢} - FIJ-_I) at

. efi? at2 ¢4 o4 1 i
E[vi, * 25 (VJ._IFJ. - vj-lFIj—l)]

at* /_i?2 o, i i2
+ Fife 2ffll | = FI]
r (J 2riFt) ) = F1l)

P . .
---------

.........................
..................
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so that

Var[V;] * Var[V;_l]’ -2 %:'2' COV[v;._IFI;._l] + ;% Var[F;.] + Var [FI;_I]

It is apparent that it will be necessary to compute

Var[V}FI;]

for the next time step and that will be calculated when FI} is found.

The displaced mean and variance are

E[d;] - E[d;._1 + V;At]

= deterministic calculations using mean values

varfdl] = €[e]"] - e[a]]2

E[d;.z] . Var[d}_l] + 2atCov ;-1"}-1] -2 iff. Cov a;_ln
m

+ Var[V}]

The equations for the random properties for the remaining parameters in the
one-dimensional finite element algorithm have been developed and are available
in the computer program found in the Appendix. The program computes the evolu-
tion of the multivariate random distribution of the response measures, includ-

ing mean and variance for each parameter and covariance between parameters.
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ivow, it a normal or a lognormal distribution is selected to represent the
form of the distribution, then the parameters exist to completely define the

distribution at any time step.

Even tnougn tne response measures form a multivariate distribution and
integration would require an n-fold integration scheme, the marginal prob-
ability density functions can be assumed to be normal or lognormal if the
joint propbability density is likewise normal or lognormal, so that some

information can be obtained from the marginal density functions.

3. NUMERICAL cXAMPLE

A bar 5 m long, with properties as shown in Table 9, is subjected to a
decaying exponential load of the form
£ = Ae at
where
A= 4,15 mPa

a = 1000

t = time in seconds

The above problem has been solved using a finite element procedure witn A
as a rangom parameter with mean 4.15 and standard deviation 0.4. Response
measures of the first two nodes are shown in Figures 19 through 22. A one-
standard deviation bound on the mean is shown for each parameter. A second
problem is solved whicnh includea random material properties as shown in Table

10. This solution is also shown on Figures 19 through 22.
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TABLE 9. PROPERTIES OF BAR

.oa,

Area = 0.01 m2
Density = 7840 kg/m3

R ~e=r
', 1, f-'t. . ¢
b sl PN

E, = 2 E+11 Pa e, = -0.022 =
E, = 1 E+11 Pa e, = -0.005 0

S

where El. £ € and ¢, are defined
by the following:

Wy S L
A W e e

The model unloads on the initial modules, E.

=

2

[, ]

o 0

. Qv

- 4
\ * ~.
p ] -
%‘ a |A! | o
o g 1] ] k-
- (%] €1 €2 ‘.'
- _ ) o
3 Strain (compression) -
o
b~

- TABLE 10. RANDOM MATERIAL PROPERTIES

F Standard

. Parameter Mean, Pa deviation, Pa
- E, 2 E+11 2 E+10

8 E2 1 E+1] 1 E+10
€ -0.002 0.0002

€, -0.005 0.0001
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Standard deviation, random load and material properties

&

x ! E
g 30r g
[7¢d RN/ IR
o i e R
- /4 e
(7, ] FYA et
200y Y '-:t'-';':
T M7 2. Nodel ko
- 100+ S
' 7 :::"’::..“
4 A
4 RS
0 - L 1 N 1 —_ Lo~ e " j e
0 2.0€e-4 4.0E-4 6.0E-4 8.0€-4 1.0€-3 L
L Time, S :'-,‘-'L_‘
X ~——————— Mean value L
— —— — = Standard deviation, random load U
s P e e . -

600 r——— : . . N o
| j N
i e
500 - . - D
- | -
i ,/" . - i L_
b. Node 2 P -i-inb g NN K S
¢ == A
400 + LR AN -
g -'/,{" . ——aq N '\ \ - T
< L S A, P v\ "\ \ A - ..~'-:.-
e s NN w <.
- 3 Y Y \\\\\ -~ < A T
L4 - i/ \ ~ o’ =
g 00 OO YT -
- 14t v N\ ) )
L s -~ -
a /7/, A\ ~ .
e A S -
200 2 v N N7 O
Ii,,i" VAN J s
A7 \ o
b '}“;,/ \ \ \-—/ | PO
4 \ \\ | l
100} s‘{' \ N - T
‘ \ \\- -t ~‘
! A N '
< N j
P \
o 4‘ ' -t . - | i ' \4
. 0 2.0E-4 4.0E-4 6.0E-4 8.0E-4 1.0€-3
Time, S
Figure 22. Random character of stress, nodes ! and 2.
109
e e N




V. CONCLUSIONS AND RECOMMENDATIONS

1. CUNCLUSIONS

Procedures nave been developed to compute the probability of failure of
structures subjected to blast and shock loads. The requirements are as

follows:

a. The characteristics of the random load must be specified.

b. The structure system parameters that are considered random must be

adequately specified.
¢. Ueterministic tools to compute the response must be availaole.

d. The random nature of the failure criteria must be characterized.

There are limitations to the presented approaches. For the approach
presented for SUF systems, the computational storage requirement is quife
large. Methods to reduce the requirements rely on narrow band response
assumptions wnich are not correct for pign1y nonlinear systems. The
discretization of response space introduces further numerical error and must
De carefully selected with respect to time step and response measure nistory

results.

The one approach presented for MDF representations is limited by the
requirement to truncate the Taylor series at a reasonable order so as to limit
tne number of deterministic calculations that mu.t be run to provide the
numerical approximations of the partial differences. This truncation has been

at the linear terms for the example problems, and is adequate as long as the
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distribution of tne response about its mean is narrow enough so that the
linear approximation is adequate. Otherwise higher order terms must be main-
tained. The linear terms can be adequate for nonlinear response if the peak
range over which the linear approximation is used accounts for a significant

portion of the peak response distribution. That is, for reasonable bounds on

. the peak response distribution, the peak response function must be linear in

the random parameters.

Tne second MUF approach (finite element) would require extensive develop-

ment for two-dimensional problems.

The approacnes do not address model uncertainty. Model uncertainty

snould not be addressed witn a random property approach and appropriate pro-

cedures are outside the scope of this report.

In practical application of the approaches developed in this investiga-
tion, the most severe limitation is an inadequate data base from which to
establisn random character of the loads, the structure system parameters, and
tne failure criteria. Testing is very expensive because of the nature of the

lToads; ana reasonable tests provide some damage to the structure, making them
difficult to repeat. Further definition of what can be correctly addressed as

d& random variaole is neeaed.

2. EXTENSIONS

The most useful steps beyond this stuay include:

a. more thorough criteria for determining the order of truncation of the

Taylor series. This would be developed mostly by extensive experience with a

variety of problems.
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. b. The one-dimensional finite element model could be expanded to two- ' i:;f
dimension. It may be necessary to approximate some of the relationships to . E&g}
keep the development to a manageable state. More experience with the one- =
dimensional model would be nelpful. Eﬁ%
c. Tne distribution of response measures could be used to validate hEhH
whetner a deterministic model could produce random response for random inputs EE}

in the same way as it does for the real system. For example, given a reason- 5{5-
able random input loading, both a mathematical model and a test could be ;
conducted for concrete specimens. The distribution of the strain from both
could pe compared to validate the mathematical model. Because of tne complex
stress/strain paths that are investigated, normalization of data along path

segments would probably be required.
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